L(s) = 1 | + (−0.905 − 0.424i)2-s + (−0.978 + 0.207i)3-s + (0.640 + 0.768i)4-s + (0.449 − 0.893i)5-s + (0.974 + 0.226i)6-s + (−0.254 − 0.967i)8-s + (0.913 − 0.406i)9-s + (−0.786 + 0.618i)10-s + (−0.786 − 0.618i)12-s + (0.696 − 0.717i)13-s + (−0.254 + 0.967i)15-s + (−0.179 + 0.983i)16-s + (0.00951 + 0.999i)17-s + (−0.999 − 0.0190i)18-s + (0.953 − 0.299i)19-s + (0.974 − 0.226i)20-s + ⋯ |
L(s) = 1 | + (−0.905 − 0.424i)2-s + (−0.978 + 0.207i)3-s + (0.640 + 0.768i)4-s + (0.449 − 0.893i)5-s + (0.974 + 0.226i)6-s + (−0.254 − 0.967i)8-s + (0.913 − 0.406i)9-s + (−0.786 + 0.618i)10-s + (−0.786 − 0.618i)12-s + (0.696 − 0.717i)13-s + (−0.254 + 0.967i)15-s + (−0.179 + 0.983i)16-s + (0.00951 + 0.999i)17-s + (−0.999 − 0.0190i)18-s + (0.953 − 0.299i)19-s + (0.974 − 0.226i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(0.516−0.856i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(0.516−0.856i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
0.516−0.856i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), 0.516−0.856i)
|
Particular Values
L(21) |
≈ |
0.7199716971−0.4066803346i |
L(21) |
≈ |
0.7199716971−0.4066803346i |
L(1) |
≈ |
0.6363767816−0.1913326036i |
L(1) |
≈ |
0.6363767816−0.1913326036i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.905−0.424i)T |
| 3 | 1+(−0.978+0.207i)T |
| 5 | 1+(0.449−0.893i)T |
| 13 | 1+(0.696−0.717i)T |
| 17 | 1+(0.00951+0.999i)T |
| 19 | 1+(0.953−0.299i)T |
| 23 | 1+(0.723−0.690i)T |
| 29 | 1+(0.993+0.113i)T |
| 31 | 1+(0.999−0.0380i)T |
| 37 | 1+(−0.0665+0.997i)T |
| 41 | 1+(−0.921+0.389i)T |
| 43 | 1+(0.841−0.540i)T |
| 47 | 1+(−0.999+0.0190i)T |
| 53 | 1+(−0.179−0.983i)T |
| 59 | 1+(0.123+0.992i)T |
| 61 | 1+(0.820+0.572i)T |
| 67 | 1+(−0.327+0.945i)T |
| 71 | 1+(0.198+0.980i)T |
| 73 | 1+(−0.851+0.524i)T |
| 79 | 1+(0.988+0.151i)T |
| 83 | 1+(0.610−0.791i)T |
| 89 | 1+(−0.995−0.0950i)T |
| 97 | 1+(−0.998−0.0570i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.47458462006538631019180231594, −21.38859732444335718328604351306, −20.74840428523875935999003386470, −19.3669073218981970828622911156, −18.85240948342509159220227181610, −18.00296627327045791607165445148, −17.726782579992833245383852579378, −16.71963191782407205498690924101, −15.98860777394384343118171711530, −15.35917363245651776105949244211, −14.10094729294623455334154446403, −13.63051319951847688572013564865, −12.10660172114480394065925118055, −11.35767976318189550773284012421, −10.81720434662167717262993376480, −9.86722717702013561644627100486, −9.28497722083751375943215887161, −7.91551207646482406564276433546, −7.07190377194313479266972991202, −6.51314908634835465543663585469, −5.71392528606277697072354451402, −4.82610425904666123025489478697, −3.1834121294660055405636721042, −1.9606082583537887920301331195, −0.96959469795578676437417033011,
0.82110696530715119649623668332, 1.439387340552523432651534321191, 2.918350703973749498505076785800, 4.12159552420718608544769169698, 5.12940150530554011241068621152, 6.09228502712370163059621900312, 6.8783770700613350173965039884, 8.1811168648284085706995411268, 8.75322991433109052417882736097, 9.92834292092710876532303514904, 10.29225321767549694192622702598, 11.30939032222343535307972796372, 12.04943223337440161498745447110, 12.824278843894131446115140360585, 13.4517284903637996291286043962, 15.13865562672611421265781960363, 15.96426972311946945959366004914, 16.50941629873128209865829765462, 17.4324027615489850324264389821, 17.7063772259317313670378454907, 18.63697139574115765874567576964, 19.5649600387194410784534206070, 20.575732863777195607672356366210, 20.97658413522406274634850732464, 21.83421201371513400561794337474