L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.923 + 0.382i)3-s − i·4-s + (−0.923 + 0.382i)6-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s + (0.382 − 0.923i)12-s − i·13-s + (0.923 + 0.382i)14-s − 16-s − 18-s + (0.707 − 0.707i)19-s − i·21-s + (−0.382 + 0.923i)22-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.923 + 0.382i)3-s − i·4-s + (−0.923 + 0.382i)6-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s + (0.382 − 0.923i)12-s − i·13-s + (0.923 + 0.382i)14-s − 16-s − 18-s + (0.707 − 0.707i)19-s − i·21-s + (−0.382 + 0.923i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.620496926 + 0.2060868501i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.620496926 + 0.2060868501i\) |
\(L(1)\) |
\(\approx\) |
\(1.091463073 + 0.2189730300i\) |
\(L(1)\) |
\(\approx\) |
\(1.091463073 + 0.2189730300i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.923 + 0.382i)T \) |
| 7 | \( 1 + (-0.382 - 0.923i)T \) |
| 11 | \( 1 + (0.923 - 0.382i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (0.923 - 0.382i)T \) |
| 29 | \( 1 + (-0.382 + 0.923i)T \) |
| 31 | \( 1 + (0.923 + 0.382i)T \) |
| 37 | \( 1 + (0.923 + 0.382i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.707 - 0.707i)T \) |
| 61 | \( 1 + (-0.382 - 0.923i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.923 - 0.382i)T \) |
| 73 | \( 1 + (-0.382 + 0.923i)T \) |
| 79 | \( 1 + (0.923 - 0.382i)T \) |
| 83 | \( 1 + (0.707 - 0.707i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.382 - 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.50137809946431807577679705447, −29.347230512710687804304692606335, −28.443636219015225317633302403750, −27.24067786911380157114926879544, −26.26608779827375332313823359348, −25.28131392605584958940622905024, −24.58927237800833062326956830963, −22.69763091512576131073520326916, −21.50023381467940726086165558412, −20.616163287440834185305705265366, −19.35665624053114556991738633945, −18.92017115024898258357114622317, −17.73535013545848440726856623564, −16.34838266138238432248137448924, −14.99354924254588020921706455392, −13.65021053507424701551909866705, −12.42243845807512292983898712950, −11.59176581612154845945933617608, −9.612709026336354630943416879009, −9.15693233760104651333120648813, −7.85224886221858005304273809957, −6.562445535207692616448961634566, −4.04727258395033041439880221760, −2.71743368480998168859905912093, −1.47483216753465449327665106128,
1.03870173904658438839804357666, 3.204096725744895456911218453034, 4.82308053022495394980421490358, 6.64828752562168549730907897057, 7.73614137240779641774672885018, 8.91401043749632349233098804726, 9.905999461304378219325073573910, 10.95711067511358172125007275140, 13.23348094126034354772284250729, 14.204020699161438058609645765165, 15.22318465233910523970906578917, 16.30338754271236377669722668201, 17.26084327709664899062428242478, 18.68049001396662027587529106491, 19.83782811183154708933930346881, 20.27621877178763385621998108624, 22.04633780290280853037513809752, 23.25310497638154336094244995141, 24.612506175870748912618936410381, 25.27905223817930811874722512559, 26.46103776122229073514320960767, 26.98949575585431324936661935824, 28.02097913405855246697954647338, 29.484219225704698038196085904888, 30.50391780400508807247516042834