Properties

Label 1-85-85.14-r1-0-0
Degree 11
Conductor 8585
Sign 0.968+0.250i0.968 + 0.250i
Analytic cond. 9.134519.13451
Root an. cond. 9.134519.13451
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s + (0.923 + 0.382i)3-s i·4-s + (−0.923 + 0.382i)6-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s + (0.382 − 0.923i)12-s i·13-s + (0.923 + 0.382i)14-s − 16-s − 18-s + (0.707 − 0.707i)19-s i·21-s + (−0.382 + 0.923i)22-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)2-s + (0.923 + 0.382i)3-s i·4-s + (−0.923 + 0.382i)6-s + (−0.382 − 0.923i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s + (0.382 − 0.923i)12-s i·13-s + (0.923 + 0.382i)14-s − 16-s − 18-s + (0.707 − 0.707i)19-s i·21-s + (−0.382 + 0.923i)22-s + ⋯

Functional equation

Λ(s)=(85s/2ΓR(s+1)L(s)=((0.968+0.250i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(85s/2ΓR(s+1)L(s)=((0.968+0.250i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 8585    =    5175 \cdot 17
Sign: 0.968+0.250i0.968 + 0.250i
Analytic conductor: 9.134519.13451
Root analytic conductor: 9.134519.13451
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ85(14,)\chi_{85} (14, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 85, (1: ), 0.968+0.250i)(1,\ 85,\ (1:\ ),\ 0.968 + 0.250i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.620496926+0.2060868501i1.620496926 + 0.2060868501i
L(12)L(\frac12) \approx 1.620496926+0.2060868501i1.620496926 + 0.2060868501i
L(1)L(1) \approx 1.091463073+0.2189730300i1.091463073 + 0.2189730300i
L(1)L(1) \approx 1.091463073+0.2189730300i1.091463073 + 0.2189730300i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1 1
good2 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
3 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
7 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
11 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
13 1iT 1 - iT
19 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
23 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
29 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
31 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
37 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
41 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
43 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
47 1iT 1 - iT
53 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
59 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
61 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
67 1+T 1 + T
71 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
73 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
79 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1iT 1 - iT
97 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−30.50137809946431807577679705447, −29.347230512710687804304692606335, −28.443636219015225317633302403750, −27.24067786911380157114926879544, −26.26608779827375332313823359348, −25.28131392605584958940622905024, −24.58927237800833062326956830963, −22.69763091512576131073520326916, −21.50023381467940726086165558412, −20.616163287440834185305705265366, −19.35665624053114556991738633945, −18.92017115024898258357114622317, −17.73535013545848440726856623564, −16.34838266138238432248137448924, −14.99354924254588020921706455392, −13.65021053507424701551909866705, −12.42243845807512292983898712950, −11.59176581612154845945933617608, −9.612709026336354630943416879009, −9.15693233760104651333120648813, −7.85224886221858005304273809957, −6.562445535207692616448961634566, −4.04727258395033041439880221760, −2.71743368480998168859905912093, −1.47483216753465449327665106128, 1.03870173904658438839804357666, 3.204096725744895456911218453034, 4.82308053022495394980421490358, 6.64828752562168549730907897057, 7.73614137240779641774672885018, 8.91401043749632349233098804726, 9.905999461304378219325073573910, 10.95711067511358172125007275140, 13.23348094126034354772284250729, 14.204020699161438058609645765165, 15.22318465233910523970906578917, 16.30338754271236377669722668201, 17.26084327709664899062428242478, 18.68049001396662027587529106491, 19.83782811183154708933930346881, 20.27621877178763385621998108624, 22.04633780290280853037513809752, 23.25310497638154336094244995141, 24.612506175870748912618936410381, 25.27905223817930811874722512559, 26.46103776122229073514320960767, 26.98949575585431324936661935824, 28.02097913405855246697954647338, 29.484219225704698038196085904888, 30.50391780400508807247516042834

Graph of the ZZ-function along the critical line