L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.382 − 0.923i)3-s − i·4-s + (0.923 + 0.382i)6-s + (−0.923 − 0.382i)7-s + (0.707 + 0.707i)8-s + (−0.707 + 0.707i)9-s + (−0.923 − 0.382i)11-s + (−0.923 + 0.382i)12-s − 13-s + (0.923 − 0.382i)14-s − 16-s − i·18-s + (−0.707 − 0.707i)19-s + i·21-s + (0.923 − 0.382i)22-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.382 − 0.923i)3-s − i·4-s + (0.923 + 0.382i)6-s + (−0.923 − 0.382i)7-s + (0.707 + 0.707i)8-s + (−0.707 + 0.707i)9-s + (−0.923 − 0.382i)11-s + (−0.923 + 0.382i)12-s − 13-s + (0.923 − 0.382i)14-s − 16-s − i·18-s + (−0.707 − 0.707i)19-s + i·21-s + (0.923 − 0.382i)22-s + ⋯ |
Λ(s)=(=(85s/2ΓR(s)L(s)(−0.724−0.688i)Λ(1−s)
Λ(s)=(=(85s/2ΓR(s)L(s)(−0.724−0.688i)Λ(1−s)
Degree: |
1 |
Conductor: |
85
= 5⋅17
|
Sign: |
−0.724−0.688i
|
Analytic conductor: |
0.394738 |
Root analytic conductor: |
0.394738 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ85(57,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 85, (0: ), −0.724−0.688i)
|
Particular Values
L(21) |
≈ |
0.08928106553−0.2235191158i |
L(21) |
≈ |
0.08928106553−0.2235191158i |
L(1) |
≈ |
0.4294688579−0.1020763067i |
L(1) |
≈ |
0.4294688579−0.1020763067i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1+(−0.707+0.707i)T |
| 3 | 1+(−0.382−0.923i)T |
| 7 | 1+(−0.923−0.382i)T |
| 11 | 1+(−0.923−0.382i)T |
| 13 | 1−T |
| 19 | 1+(−0.707−0.707i)T |
| 23 | 1+(0.382−0.923i)T |
| 29 | 1+(−0.382−0.923i)T |
| 31 | 1+(−0.923+0.382i)T |
| 37 | 1+(0.382+0.923i)T |
| 41 | 1+(−0.382+0.923i)T |
| 43 | 1+(−0.707−0.707i)T |
| 47 | 1+T |
| 53 | 1+(0.707−0.707i)T |
| 59 | 1+(0.707−0.707i)T |
| 61 | 1+(0.382−0.923i)T |
| 67 | 1−iT |
| 71 | 1+(0.923−0.382i)T |
| 73 | 1+(−0.923+0.382i)T |
| 79 | 1+(0.923+0.382i)T |
| 83 | 1+(−0.707+0.707i)T |
| 89 | 1−iT |
| 97 | 1+(−0.923+0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−31.40134044194414453549314904721, −29.55826032559495271943083024882, −28.984276359289998788994577742464, −28.01238570633121481938327570702, −27.11310135232674559400304153313, −26.10807539844722781299942126105, −25.333580252382846115729520199, −23.344105792424552006714056172924, −22.23516912783899901982705972547, −21.485476647705395588432827675047, −20.40612520185525379009281912081, −19.359042920622371440340294804285, −18.15871832681635481511565606828, −16.97898274557538364724628110947, −16.11950886094157234681238326527, −14.97990612886508400396814252090, −12.97225653484040312459631900597, −12.04824537621092211911797925209, −10.68214302782606843679258552689, −9.85596342223925887134491441122, −8.9231071825530929938929691276, −7.27328334579718767942258940877, −5.45789470828319650454728115623, −3.85705240619494951152021901707, −2.54528249262928664135182877806,
0.31808636057728767729118627245, 2.43525560267084227011274805788, 5.09060132704338165328197960169, 6.40218057799490864212948522330, 7.26698260075404946332182931229, 8.43943994609804439044077628646, 9.94953776400973228622195903742, 11.06874636715782241608524832818, 12.73027214438804170281741796777, 13.68599868644918342182133685245, 15.12394455564625498691665335873, 16.489040350333895067217739805935, 17.16794331678531674442694160403, 18.43100124549418401493144166779, 19.1867255434862138607227569429, 20.13479190047071827161064413313, 22.17126986148278219061676782728, 23.3002627955444567759545672829, 24.01033708281403746228697970690, 25.081445234739382006271453557, 26.03222196707254168069712146046, 26.98961235354758927103751802464, 28.49737564867443819906327725773, 29.028106680099927868205628653130, 30.02943377449248199554825787503