L(s) = 1 | + (0.642 − 0.766i)2-s + (−0.342 − 0.939i)3-s + (−0.173 − 0.984i)4-s + (−0.939 − 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (0.766 + 0.642i)21-s + (0.342 + 0.939i)22-s + ⋯ |
L(s) = 1 | + (0.642 − 0.766i)2-s + (−0.342 − 0.939i)3-s + (−0.173 − 0.984i)4-s + (−0.939 − 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (0.766 + 0.642i)21-s + (0.342 + 0.939i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3497137382 - 0.5601976959i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3497137382 - 0.5601976959i\) |
\(L(1)\) |
\(\approx\) |
\(0.5965687012 - 0.6674330367i\) |
\(L(1)\) |
\(\approx\) |
\(0.5965687012 - 0.6674330367i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.642 - 0.766i)T \) |
| 3 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.342 - 0.939i)T \) |
| 17 | \( 1 + (0.642 - 0.766i)T \) |
| 23 | \( 1 + (-0.984 + 0.173i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (0.984 + 0.173i)T \) |
| 47 | \( 1 + (-0.642 - 0.766i)T \) |
| 53 | \( 1 + (-0.984 + 0.173i)T \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.642 - 0.766i)T \) |
| 71 | \( 1 + (0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.342 - 0.939i)T \) |
| 79 | \( 1 + (0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (0.939 + 0.342i)T \) |
| 97 | \( 1 + (0.642 - 0.766i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.94243604674977948958265943358, −29.59961267039313672724218129057, −28.612088658561208255227119446584, −27.21763913980803072457037691183, −26.20557605588313276956830417079, −25.79761619061461641226604458162, −24.024826142751495068540501580748, −23.34630296804755204400924939421, −22.24801989763059694770963550749, −21.49014426037987623326318389887, −20.47830002353351941271124702323, −18.861104045681340629236942607263, −17.25712284835781084240895170859, −16.38373637406579384791446979359, −15.82055064072091974407518211577, −14.476300880006309499456367359349, −13.49174911312073558430473760731, −12.15208694490535158407410267678, −10.83807026633224549410073409505, −9.494898084952516155217991840307, −8.206187441113791849551139205205, −6.53891879084937925916689457559, −5.640452464303071769200658192996, −4.16116066900008687923313443228, −3.269918589202958451741776769457,
0.23710456500330123924622987430, 2.01429348739387199417122852525, 3.25264545885616451345748397835, 5.22567953447397373557343620678, 6.14767269563634193962204681315, 7.59744136371661406243118357876, 9.40843568354654126379013416789, 10.62311526621822162643543396916, 11.97666966626212887907224754885, 12.7059488447199990192992140839, 13.520406887732427875352736950902, 14.90959489505560074119572099520, 16.16937018266751020037620948853, 17.95988554663793216990438418929, 18.59213269299840669682264725015, 19.74042597768436183267266145414, 20.60286308463406481440791743138, 22.18260642291360935154385210523, 22.82286385365912383263584272293, 23.68555806739592763704933859575, 24.91526869847997030433189077588, 25.776097562100778979021556828322, 27.79362144393399565653195309370, 28.39287880792974354802535081038, 29.46334248797391558856752942881