L(s) = 1 | + (0.642 − 0.766i)2-s + (−0.342 − 0.939i)3-s + (−0.173 − 0.984i)4-s + (−0.939 − 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (0.766 + 0.642i)21-s + (0.342 + 0.939i)22-s + ⋯ |
L(s) = 1 | + (0.642 − 0.766i)2-s + (−0.342 − 0.939i)3-s + (−0.173 − 0.984i)4-s + (−0.939 − 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (0.766 + 0.642i)21-s + (0.342 + 0.939i)22-s + ⋯ |
Λ(s)=(=(95s/2ΓR(s+1)L(s)(−0.439+0.898i)Λ(1−s)
Λ(s)=(=(95s/2ΓR(s+1)L(s)(−0.439+0.898i)Λ(1−s)
Degree: |
1 |
Conductor: |
95
= 5⋅19
|
Sign: |
−0.439+0.898i
|
Analytic conductor: |
10.2091 |
Root analytic conductor: |
10.2091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ95(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 95, (1: ), −0.439+0.898i)
|
Particular Values
L(21) |
≈ |
−0.3497137382−0.5601976959i |
L(21) |
≈ |
−0.3497137382−0.5601976959i |
L(1) |
≈ |
0.5965687012−0.6674330367i |
L(1) |
≈ |
0.5965687012−0.6674330367i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(0.642−0.766i)T |
| 3 | 1+(−0.342−0.939i)T |
| 7 | 1+(−0.866+0.5i)T |
| 11 | 1+(−0.5+0.866i)T |
| 13 | 1+(0.342−0.939i)T |
| 17 | 1+(0.642−0.766i)T |
| 23 | 1+(−0.984+0.173i)T |
| 29 | 1+(−0.766+0.642i)T |
| 31 | 1+(−0.5−0.866i)T |
| 37 | 1−iT |
| 41 | 1+(−0.939+0.342i)T |
| 43 | 1+(0.984+0.173i)T |
| 47 | 1+(−0.642−0.766i)T |
| 53 | 1+(−0.984+0.173i)T |
| 59 | 1+(−0.766−0.642i)T |
| 61 | 1+(0.173+0.984i)T |
| 67 | 1+(−0.642−0.766i)T |
| 71 | 1+(0.173−0.984i)T |
| 73 | 1+(−0.342−0.939i)T |
| 79 | 1+(0.939−0.342i)T |
| 83 | 1+(0.866−0.5i)T |
| 89 | 1+(0.939+0.342i)T |
| 97 | 1+(0.642−0.766i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−30.94243604674977948958265943358, −29.59961267039313672724218129057, −28.612088658561208255227119446584, −27.21763913980803072457037691183, −26.20557605588313276956830417079, −25.79761619061461641226604458162, −24.024826142751495068540501580748, −23.34630296804755204400924939421, −22.24801989763059694770963550749, −21.49014426037987623326318389887, −20.47830002353351941271124702323, −18.861104045681340629236942607263, −17.25712284835781084240895170859, −16.38373637406579384791446979359, −15.82055064072091974407518211577, −14.476300880006309499456367359349, −13.49174911312073558430473760731, −12.15208694490535158407410267678, −10.83807026633224549410073409505, −9.494898084952516155217991840307, −8.206187441113791849551139205205, −6.53891879084937925916689457559, −5.640452464303071769200658192996, −4.16116066900008687923313443228, −3.269918589202958451741776769457,
0.23710456500330123924622987430, 2.01429348739387199417122852525, 3.25264545885616451345748397835, 5.22567953447397373557343620678, 6.14767269563634193962204681315, 7.59744136371661406243118357876, 9.40843568354654126379013416789, 10.62311526621822162643543396916, 11.97666966626212887907224754885, 12.7059488447199990192992140839, 13.520406887732427875352736950902, 14.90959489505560074119572099520, 16.16937018266751020037620948853, 17.95988554663793216990438418929, 18.59213269299840669682264725015, 19.74042597768436183267266145414, 20.60286308463406481440791743138, 22.18260642291360935154385210523, 22.82286385365912383263584272293, 23.68555806739592763704933859575, 24.91526869847997030433189077588, 25.776097562100778979021556828322, 27.79362144393399565653195309370, 28.39287880792974354802535081038, 29.46334248797391558856752942881