Properties

Label 1-95-95.23-r1-0-0
Degree 11
Conductor 9595
Sign 0.439+0.898i-0.439 + 0.898i
Analytic cond. 10.209110.2091
Root an. cond. 10.209110.2091
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 0.766i)2-s + (−0.342 − 0.939i)3-s + (−0.173 − 0.984i)4-s + (−0.939 − 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (0.766 + 0.642i)21-s + (0.342 + 0.939i)22-s + ⋯
L(s)  = 1  + (0.642 − 0.766i)2-s + (−0.342 − 0.939i)3-s + (−0.173 − 0.984i)4-s + (−0.939 − 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (0.766 + 0.642i)21-s + (0.342 + 0.939i)22-s + ⋯

Functional equation

Λ(s)=(95s/2ΓR(s+1)L(s)=((0.439+0.898i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(95s/2ΓR(s+1)L(s)=((0.439+0.898i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 9595    =    5195 \cdot 19
Sign: 0.439+0.898i-0.439 + 0.898i
Analytic conductor: 10.209110.2091
Root analytic conductor: 10.209110.2091
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ95(23,)\chi_{95} (23, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 95, (1: ), 0.439+0.898i)(1,\ 95,\ (1:\ ),\ -0.439 + 0.898i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.34971373820.5601976959i-0.3497137382 - 0.5601976959i
L(12)L(\frac12) \approx 0.34971373820.5601976959i-0.3497137382 - 0.5601976959i
L(1)L(1) \approx 0.59656870120.6674330367i0.5965687012 - 0.6674330367i
L(1)L(1) \approx 0.59656870120.6674330367i0.5965687012 - 0.6674330367i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
good2 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
3 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
7 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
11 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
13 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
17 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
23 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
29 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
31 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
37 1iT 1 - iT
41 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
43 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
47 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
53 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
59 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
61 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
67 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
71 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
73 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
79 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
83 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
89 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
97 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−30.94243604674977948958265943358, −29.59961267039313672724218129057, −28.612088658561208255227119446584, −27.21763913980803072457037691183, −26.20557605588313276956830417079, −25.79761619061461641226604458162, −24.024826142751495068540501580748, −23.34630296804755204400924939421, −22.24801989763059694770963550749, −21.49014426037987623326318389887, −20.47830002353351941271124702323, −18.861104045681340629236942607263, −17.25712284835781084240895170859, −16.38373637406579384791446979359, −15.82055064072091974407518211577, −14.476300880006309499456367359349, −13.49174911312073558430473760731, −12.15208694490535158407410267678, −10.83807026633224549410073409505, −9.494898084952516155217991840307, −8.206187441113791849551139205205, −6.53891879084937925916689457559, −5.640452464303071769200658192996, −4.16116066900008687923313443228, −3.269918589202958451741776769457, 0.23710456500330123924622987430, 2.01429348739387199417122852525, 3.25264545885616451345748397835, 5.22567953447397373557343620678, 6.14767269563634193962204681315, 7.59744136371661406243118357876, 9.40843568354654126379013416789, 10.62311526621822162643543396916, 11.97666966626212887907224754885, 12.7059488447199990192992140839, 13.520406887732427875352736950902, 14.90959489505560074119572099520, 16.16937018266751020037620948853, 17.95988554663793216990438418929, 18.59213269299840669682264725015, 19.74042597768436183267266145414, 20.60286308463406481440791743138, 22.18260642291360935154385210523, 22.82286385365912383263584272293, 23.68555806739592763704933859575, 24.91526869847997030433189077588, 25.776097562100778979021556828322, 27.79362144393399565653195309370, 28.39287880792974354802535081038, 29.46334248797391558856752942881

Graph of the ZZ-function along the critical line