Properties

Label 1-95-95.27-r0-0-0
Degree 11
Conductor 9595
Sign 0.991+0.127i0.991 + 0.127i
Analytic cond. 0.4411780.441178
Root an. cond. 0.4411780.441178
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 − 0.866i)4-s + (−0.5 + 0.866i)6-s + i·7-s + i·8-s + (0.5 − 0.866i)9-s + 11-s i·12-s + (−0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + i·18-s + (0.5 + 0.866i)21-s + (−0.866 + 0.5i)22-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 − 0.866i)4-s + (−0.5 + 0.866i)6-s + i·7-s + i·8-s + (0.5 − 0.866i)9-s + 11-s i·12-s + (−0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + i·18-s + (0.5 + 0.866i)21-s + (−0.866 + 0.5i)22-s + ⋯

Functional equation

Λ(s)=(95s/2ΓR(s)L(s)=((0.991+0.127i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.127i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(95s/2ΓR(s)L(s)=((0.991+0.127i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.127i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 9595    =    5195 \cdot 19
Sign: 0.991+0.127i0.991 + 0.127i
Analytic conductor: 0.4411780.441178
Root analytic conductor: 0.4411780.441178
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ95(27,)\chi_{95} (27, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 95, (0: ), 0.991+0.127i)(1,\ 95,\ (0:\ ),\ 0.991 + 0.127i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.9191528630+0.05884527032i0.9191528630 + 0.05884527032i
L(12)L(\frac12) \approx 0.9191528630+0.05884527032i0.9191528630 + 0.05884527032i
L(1)L(1) \approx 0.9452109554+0.06355692387i0.9452109554 + 0.06355692387i
L(1)L(1) \approx 0.9452109554+0.06355692387i0.9452109554 + 0.06355692387i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
good2 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
3 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
7 1+iT 1 + iT
11 1+T 1 + T
13 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
17 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
23 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
29 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
31 1T 1 - T
37 1iT 1 - iT
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
47 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
53 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
59 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
61 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
67 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
71 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
73 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
79 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
83 1iT 1 - iT
89 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
97 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−30.14478302374215218367829815622, −29.19933423769492854208036616345, −27.76103082598314813172572564066, −27.05535020422464662250435147172, −26.27184439362836933090795477601, −25.32732382418260580458770294862, −24.25721085818293273949101388628, −22.45812984064728908507401614377, −21.38171313516966552259827427514, −20.44026407351372806135985740228, −19.60280399375680085570424207946, −18.85181449382051277910892743847, −17.06079801642375459489721714729, −16.63811213004985408389921665450, −15.03658561919824872152800397615, −13.95123142725517641567263700722, −12.578807459511616275393282226606, −11.13206117608775653126856791853, −10.01392754016456614584385853345, −9.21934367625891441188778725846, −7.93085360561015145759414073561, −6.925612721765482170710184870257, −4.34338036253021673064181784620, −3.280817955322843498243209889044, −1.64524898387273256848166656262, 1.58348682469929495762951840284, 3.01352895224316356312594537840, 5.38199802318896379831780062290, 6.80383117295982513791911911156, 7.83223289911116261247481629873, 9.02653878264752100285167661727, 9.67845695439024174604692812303, 11.52789204258280998488223151785, 12.713539649326962386350214632900, 14.49111739253738591783252154434, 14.89008610455928670641290497733, 16.25958193128096865105953996142, 17.58513925508679577952902131993, 18.55868239202358882996257963073, 19.40359210175515103409499878287, 20.250114422530522082530394775336, 21.62961250893157715305055937495, 23.191186253814226835790871574621, 24.607917414055833160359005743663, 24.96570242834065587295872955955, 25.85314589376245965589644624706, 27.11678231071668760008881723454, 27.808525068609996749905408080657, 29.239006686510723176550355395463, 29.999784790118791622389068102405

Graph of the ZZ-function along the critical line