L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 − 0.866i)4-s + (−0.5 + 0.866i)6-s + i·7-s + i·8-s + (0.5 − 0.866i)9-s + 11-s − i·12-s + (−0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + i·18-s + (0.5 + 0.866i)21-s + (−0.866 + 0.5i)22-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 − 0.866i)4-s + (−0.5 + 0.866i)6-s + i·7-s + i·8-s + (0.5 − 0.866i)9-s + 11-s − i·12-s + (−0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + i·18-s + (0.5 + 0.866i)21-s + (−0.866 + 0.5i)22-s + ⋯ |
Λ(s)=(=(95s/2ΓR(s)L(s)(0.991+0.127i)Λ(1−s)
Λ(s)=(=(95s/2ΓR(s)L(s)(0.991+0.127i)Λ(1−s)
Degree: |
1 |
Conductor: |
95
= 5⋅19
|
Sign: |
0.991+0.127i
|
Analytic conductor: |
0.441178 |
Root analytic conductor: |
0.441178 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ95(27,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 95, (0: ), 0.991+0.127i)
|
Particular Values
L(21) |
≈ |
0.9191528630+0.05884527032i |
L(21) |
≈ |
0.9191528630+0.05884527032i |
L(1) |
≈ |
0.9452109554+0.06355692387i |
L(1) |
≈ |
0.9452109554+0.06355692387i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.866−0.5i)T |
| 7 | 1+iT |
| 11 | 1+T |
| 13 | 1+(−0.866−0.5i)T |
| 17 | 1+(0.866−0.5i)T |
| 23 | 1+(0.866+0.5i)T |
| 29 | 1+(−0.5+0.866i)T |
| 31 | 1−T |
| 37 | 1−iT |
| 41 | 1+(0.5+0.866i)T |
| 43 | 1+(−0.866+0.5i)T |
| 47 | 1+(−0.866−0.5i)T |
| 53 | 1+(−0.866−0.5i)T |
| 59 | 1+(−0.5−0.866i)T |
| 61 | 1+(−0.5+0.866i)T |
| 67 | 1+(0.866+0.5i)T |
| 71 | 1+(0.5+0.866i)T |
| 73 | 1+(−0.866+0.5i)T |
| 79 | 1+(−0.5−0.866i)T |
| 83 | 1−iT |
| 89 | 1+(−0.5+0.866i)T |
| 97 | 1+(−0.866+0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−30.14478302374215218367829815622, −29.19933423769492854208036616345, −27.76103082598314813172572564066, −27.05535020422464662250435147172, −26.27184439362836933090795477601, −25.32732382418260580458770294862, −24.25721085818293273949101388628, −22.45812984064728908507401614377, −21.38171313516966552259827427514, −20.44026407351372806135985740228, −19.60280399375680085570424207946, −18.85181449382051277910892743847, −17.06079801642375459489721714729, −16.63811213004985408389921665450, −15.03658561919824872152800397615, −13.95123142725517641567263700722, −12.578807459511616275393282226606, −11.13206117608775653126856791853, −10.01392754016456614584385853345, −9.21934367625891441188778725846, −7.93085360561015145759414073561, −6.925612721765482170710184870257, −4.34338036253021673064181784620, −3.280817955322843498243209889044, −1.64524898387273256848166656262,
1.58348682469929495762951840284, 3.01352895224316356312594537840, 5.38199802318896379831780062290, 6.80383117295982513791911911156, 7.83223289911116261247481629873, 9.02653878264752100285167661727, 9.67845695439024174604692812303, 11.52789204258280998488223151785, 12.713539649326962386350214632900, 14.49111739253738591783252154434, 14.89008610455928670641290497733, 16.25958193128096865105953996142, 17.58513925508679577952902131993, 18.55868239202358882996257963073, 19.40359210175515103409499878287, 20.250114422530522082530394775336, 21.62961250893157715305055937495, 23.191186253814226835790871574621, 24.607917414055833160359005743663, 24.96570242834065587295872955955, 25.85314589376245965589644624706, 27.11678231071668760008881723454, 27.808525068609996749905408080657, 29.239006686510723176550355395463, 29.999784790118791622389068102405