Properties

Label 1-95-95.52-r0-0-0
Degree 11
Conductor 9595
Sign 0.9470.319i-0.947 - 0.319i
Analytic cond. 0.4411780.441178
Root an. cond. 0.4411780.441178
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 − 0.766i)2-s + (0.342 − 0.939i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)6-s + (−0.866 − 0.5i)7-s + (0.866 − 0.5i)8-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)12-s + (−0.342 − 0.939i)13-s + (0.173 + 0.984i)14-s + (−0.939 − 0.342i)16-s + (0.642 + 0.766i)17-s + i·18-s + (−0.766 + 0.642i)21-s + (−0.342 + 0.939i)22-s + ⋯
L(s)  = 1  + (−0.642 − 0.766i)2-s + (0.342 − 0.939i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)6-s + (−0.866 − 0.5i)7-s + (0.866 − 0.5i)8-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)12-s + (−0.342 − 0.939i)13-s + (0.173 + 0.984i)14-s + (−0.939 − 0.342i)16-s + (0.642 + 0.766i)17-s + i·18-s + (−0.766 + 0.642i)21-s + (−0.342 + 0.939i)22-s + ⋯

Functional equation

Λ(s)=(95s/2ΓR(s)L(s)=((0.9470.319i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 - 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(95s/2ΓR(s)L(s)=((0.9470.319i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 - 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 9595    =    5195 \cdot 19
Sign: 0.9470.319i-0.947 - 0.319i
Analytic conductor: 0.4411780.441178
Root analytic conductor: 0.4411780.441178
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ95(52,)\chi_{95} (52, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 95, (0: ), 0.9470.319i)(1,\ 95,\ (0:\ ),\ -0.947 - 0.319i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.098441098260.6006086724i0.09844109826 - 0.6006086724i
L(12)L(\frac12) \approx 0.098441098260.6006086724i0.09844109826 - 0.6006086724i
L(1)L(1) \approx 0.48280729770.5117430602i0.4828072977 - 0.5117430602i
L(1)L(1) \approx 0.48280729770.5117430602i0.4828072977 - 0.5117430602i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
good2 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
3 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
11 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
13 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
17 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
23 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
29 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1iT 1 - iT
41 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
43 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
47 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
53 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
59 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
61 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
67 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
71 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
73 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
79 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
83 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
89 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
97 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−31.12242189745336943663881945502, −29.111797334717695665069041376637, −28.3397504672060549765001326549, −27.43492636499187476278965415517, −26.2833459141826407300997222680, −25.75161252748203616811999877242, −24.78561449980639516465976326854, −23.28779892816688334085687053487, −22.42114462516063634819227172042, −21.12088404150241118535056115814, −19.86366893024309898905664800614, −18.98932745863336673835784642166, −17.70555875592805975237321806781, −16.37566181825622175381299470803, −15.82582928376133605319055899653, −14.7681842321104730504097958515, −13.71228689975848059076453384590, −11.87321659399841998948081112009, −10.13329951743833925893358381172, −9.64085565919297399579854665536, −8.48294765100832985696601358312, −7.095857806544854597440239975127, −5.65475188308628297460511608462, −4.42327703320778157428014223204, −2.49583477297755389244240077143, 0.74511025449881322592963152586, 2.57173992739758702876811472830, 3.61643546467546415615303384655, 6.05542231988309087738032703557, 7.539813154119690778266476623307, 8.35710282936524052313292993286, 9.7776332765217585382387141098, 10.87559206583373394574283181581, 12.3739037003792309603730347423, 13.01371531013627027091853761304, 14.12018602200271677687027188532, 16.01859806337734718550434024691, 17.1926162308816504811908489994, 18.20593215158568090874805481583, 19.25710292121462792534153560144, 19.82030796076300675170453470060, 20.9608113821875289654274933316, 22.3030005662048703505648376989, 23.39816853216645008033222697353, 24.69857658447398320121344084967, 25.86640245598931892059791984344, 26.42763306348777751096200622179, 27.80531827893020219389296716582, 29.000402725331087728262504296251, 29.674012696938874486313948172117

Graph of the ZZ-function along the critical line