L(s) = 1 | + (−0.642 − 0.766i)2-s + (0.342 − 0.939i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)6-s + (−0.866 − 0.5i)7-s + (0.866 − 0.5i)8-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)12-s + (−0.342 − 0.939i)13-s + (0.173 + 0.984i)14-s + (−0.939 − 0.342i)16-s + (0.642 + 0.766i)17-s + i·18-s + (−0.766 + 0.642i)21-s + (−0.342 + 0.939i)22-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)2-s + (0.342 − 0.939i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)6-s + (−0.866 − 0.5i)7-s + (0.866 − 0.5i)8-s + (−0.766 − 0.642i)9-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)12-s + (−0.342 − 0.939i)13-s + (0.173 + 0.984i)14-s + (−0.939 − 0.342i)16-s + (0.642 + 0.766i)17-s + i·18-s + (−0.766 + 0.642i)21-s + (−0.342 + 0.939i)22-s + ⋯ |
Λ(s)=(=(95s/2ΓR(s)L(s)(−0.947−0.319i)Λ(1−s)
Λ(s)=(=(95s/2ΓR(s)L(s)(−0.947−0.319i)Λ(1−s)
Degree: |
1 |
Conductor: |
95
= 5⋅19
|
Sign: |
−0.947−0.319i
|
Analytic conductor: |
0.441178 |
Root analytic conductor: |
0.441178 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ95(52,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 95, (0: ), −0.947−0.319i)
|
Particular Values
L(21) |
≈ |
0.09844109826−0.6006086724i |
L(21) |
≈ |
0.09844109826−0.6006086724i |
L(1) |
≈ |
0.4828072977−0.5117430602i |
L(1) |
≈ |
0.4828072977−0.5117430602i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(−0.642−0.766i)T |
| 3 | 1+(0.342−0.939i)T |
| 7 | 1+(−0.866−0.5i)T |
| 11 | 1+(−0.5−0.866i)T |
| 13 | 1+(−0.342−0.939i)T |
| 17 | 1+(0.642+0.766i)T |
| 23 | 1+(−0.984−0.173i)T |
| 29 | 1+(0.766+0.642i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1−iT |
| 41 | 1+(0.939+0.342i)T |
| 43 | 1+(0.984−0.173i)T |
| 47 | 1+(−0.642+0.766i)T |
| 53 | 1+(0.984+0.173i)T |
| 59 | 1+(0.766−0.642i)T |
| 61 | 1+(0.173−0.984i)T |
| 67 | 1+(0.642−0.766i)T |
| 71 | 1+(−0.173−0.984i)T |
| 73 | 1+(−0.342+0.939i)T |
| 79 | 1+(−0.939−0.342i)T |
| 83 | 1+(0.866+0.5i)T |
| 89 | 1+(−0.939+0.342i)T |
| 97 | 1+(−0.642−0.766i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−31.12242189745336943663881945502, −29.111797334717695665069041376637, −28.3397504672060549765001326549, −27.43492636499187476278965415517, −26.2833459141826407300997222680, −25.75161252748203616811999877242, −24.78561449980639516465976326854, −23.28779892816688334085687053487, −22.42114462516063634819227172042, −21.12088404150241118535056115814, −19.86366893024309898905664800614, −18.98932745863336673835784642166, −17.70555875592805975237321806781, −16.37566181825622175381299470803, −15.82582928376133605319055899653, −14.7681842321104730504097958515, −13.71228689975848059076453384590, −11.87321659399841998948081112009, −10.13329951743833925893358381172, −9.64085565919297399579854665536, −8.48294765100832985696601358312, −7.095857806544854597440239975127, −5.65475188308628297460511608462, −4.42327703320778157428014223204, −2.49583477297755389244240077143,
0.74511025449881322592963152586, 2.57173992739758702876811472830, 3.61643546467546415615303384655, 6.05542231988309087738032703557, 7.539813154119690778266476623307, 8.35710282936524052313292993286, 9.7776332765217585382387141098, 10.87559206583373394574283181581, 12.3739037003792309603730347423, 13.01371531013627027091853761304, 14.12018602200271677687027188532, 16.01859806337734718550434024691, 17.1926162308816504811908489994, 18.20593215158568090874805481583, 19.25710292121462792534153560144, 19.82030796076300675170453470060, 20.9608113821875289654274933316, 22.3030005662048703505648376989, 23.39816853216645008033222697353, 24.69857658447398320121344084967, 25.86640245598931892059791984344, 26.42763306348777751096200622179, 27.80531827893020219389296716582, 29.000402725331087728262504296251, 29.674012696938874486313948172117