L(s) = 1 | + (−0.707 − 0.707i)7-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)13-s − i·17-s + (−0.382 − 0.923i)19-s + (−0.707 + 0.707i)23-s + (−0.923 + 0.382i)29-s − 31-s + (0.382 − 0.923i)37-s + (0.707 − 0.707i)41-s + (0.923 + 0.382i)43-s − i·47-s + i·49-s + (0.923 + 0.382i)53-s + (−0.382 + 0.923i)59-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)7-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)13-s − i·17-s + (−0.382 − 0.923i)19-s + (−0.707 + 0.707i)23-s + (−0.923 + 0.382i)29-s − 31-s + (0.382 − 0.923i)37-s + (0.707 − 0.707i)41-s + (0.923 + 0.382i)43-s − i·47-s + i·49-s + (0.923 + 0.382i)53-s + (−0.382 + 0.923i)59-s + ⋯ |
Λ(s)=(=(960s/2ΓR(s+1)L(s)(−0.0980+0.995i)Λ(1−s)
Λ(s)=(=(960s/2ΓR(s+1)L(s)(−0.0980+0.995i)Λ(1−s)
Degree: |
1 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.0980+0.995i
|
Analytic conductor: |
103.166 |
Root analytic conductor: |
103.166 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 960, (1: ), −0.0980+0.995i)
|
Particular Values
L(21) |
≈ |
0.02590577650+0.02858261975i |
L(21) |
≈ |
0.02590577650+0.02858261975i |
L(1) |
≈ |
0.7166411420−0.1971630242i |
L(1) |
≈ |
0.7166411420−0.1971630242i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−0.707−0.707i)T |
| 11 | 1+(−0.923−0.382i)T |
| 13 | 1+(−0.382−0.923i)T |
| 17 | 1−iT |
| 19 | 1+(−0.382−0.923i)T |
| 23 | 1+(−0.707+0.707i)T |
| 29 | 1+(−0.923+0.382i)T |
| 31 | 1−T |
| 37 | 1+(0.382−0.923i)T |
| 41 | 1+(0.707−0.707i)T |
| 43 | 1+(0.923+0.382i)T |
| 47 | 1−iT |
| 53 | 1+(0.923+0.382i)T |
| 59 | 1+(−0.382+0.923i)T |
| 61 | 1+(−0.923+0.382i)T |
| 67 | 1+(0.923−0.382i)T |
| 71 | 1+(−0.707−0.707i)T |
| 73 | 1+(−0.707+0.707i)T |
| 79 | 1+iT |
| 83 | 1+(−0.382−0.923i)T |
| 89 | 1+(0.707+0.707i)T |
| 97 | 1+T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.43171932609442704427936477920, −20.63684401644699843741223288739, −19.74123287844023692248277045787, −18.79700531270012329770135933286, −18.5373718156732452553684221944, −17.375887278074413008193528473083, −16.52543251236769277142581625780, −15.905577086193338636528337370464, −14.95816803432272622298912775780, −14.38703231796498427744080334038, −13.12871264110494473233607005787, −12.63204354750149239897851342689, −11.87055034382066077966037110008, −10.78380250079415858403795175053, −9.97174674345307903595237579153, −9.24053497767353320896168914333, −8.27860137865205904515190315776, −7.45924023919548246715642995877, −6.31542054543623052941207211602, −5.76670312748212551589792240881, −4.587226936832344518521841953494, −3.6902900695761128297500497267, −2.49928280401436692489195515697, −1.79312453441752566872084345835, −0.01114976030804635271047849263,
0.69963458257967068332028789585, 2.32798489827177614708864504692, 3.149823549660015910562385769303, 4.10591088818822680197788264416, 5.26421827544306636932709589560, 5.93378046354573909022881788244, 7.35141821987915836058023954841, 7.48259663386635322167895698208, 8.871204576014224662477527331195, 9.643015390740933743274532515776, 10.55060207750226950020376581001, 11.10695591642189133368712008613, 12.316285365921652730122152081, 13.12563507860693469698806374736, 13.60141556986756421115378192141, 14.6349488083046924239256629084, 15.63205492976793005672192696766, 16.14954114202282741346647559013, 17.02393286897003972712683723867, 17.915523771167833420624494548206, 18.54253639865537868062910119453, 19.69368639532925152614443634629, 20.01404315138393070833172817255, 20.9625702773102534000983152954, 21.82868496028036918791643513969