Properties

Label 10-1304e5-1304.325-c0e5-0-1
Degree $10$
Conductor $3.770\times 10^{15}$
Sign $1$
Analytic cond. $0.116727$
Root an. cond. $0.806709$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s − 3-s + 15·4-s − 5-s − 5·6-s + 35·8-s − 5·10-s − 11-s − 15·12-s − 13-s + 15-s + 70·16-s − 19-s − 15·20-s − 5·22-s − 35·24-s − 5·26-s − 29-s + 5·30-s + 126·32-s + 33-s − 37-s − 5·38-s + 39-s − 35·40-s − 41-s − 15·44-s + ⋯
L(s)  = 1  + 5·2-s − 3-s + 15·4-s − 5-s − 5·6-s + 35·8-s − 5·10-s − 11-s − 15·12-s − 13-s + 15-s + 70·16-s − 19-s − 15·20-s − 5·22-s − 35·24-s − 5·26-s − 29-s + 5·30-s + 126·32-s + 33-s − 37-s − 5·38-s + 39-s − 35·40-s − 41-s − 15·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 163^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{15} \cdot 163^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{15} \cdot 163^{5}\)
Sign: $1$
Analytic conductor: \(0.116727\)
Root analytic conductor: \(0.806709\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1304} (325, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 2^{15} \cdot 163^{5} ,\ ( \ : 0, 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(17.99354384\)
\(L(\frac12)\) \(\approx\) \(17.99354384\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{5} \)
163$C_1$ \( ( 1 - T )^{5} \)
good3$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
5$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
11$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
13$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
19$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
29$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
37$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
41$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
47$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
59$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
67$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
71$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
97$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.69550458013521488575610389028, −5.67339253879251392499874973422, −5.58711839830927816182622788364, −5.45369651440744799427916734818, −5.26986216128255403070173974495, −5.16205928780752946834742037975, −5.12511175921664206642588528737, −4.59163045550744044033544825358, −4.54744526291529868957369200104, −4.38678492240882684908836490886, −4.24103529500060714738287590218, −4.04191907951308337052558724396, −3.94200282677566409564013445744, −3.78860019094056842198598593270, −3.43149195583217359391445643443, −3.22506122010674913647964370861, −3.12116726266440893801343968522, −2.76287056834018055160439405415, −2.69534322685201740588308474433, −2.55433929013862000853122646330, −2.05378594073999999068355458779, −1.97478062792938487520406885512, −1.93455060978440383216460627740, −1.34508569576849823377576793347, −1.11302435206381325298402161645, 1.11302435206381325298402161645, 1.34508569576849823377576793347, 1.93455060978440383216460627740, 1.97478062792938487520406885512, 2.05378594073999999068355458779, 2.55433929013862000853122646330, 2.69534322685201740588308474433, 2.76287056834018055160439405415, 3.12116726266440893801343968522, 3.22506122010674913647964370861, 3.43149195583217359391445643443, 3.78860019094056842198598593270, 3.94200282677566409564013445744, 4.04191907951308337052558724396, 4.24103529500060714738287590218, 4.38678492240882684908836490886, 4.54744526291529868957369200104, 4.59163045550744044033544825358, 5.12511175921664206642588528737, 5.16205928780752946834742037975, 5.26986216128255403070173974495, 5.45369651440744799427916734818, 5.58711839830927816182622788364, 5.67339253879251392499874973422, 5.69550458013521488575610389028

Graph of the $Z$-function along the critical line