L(s) = 1 | + 5·2-s − 3-s + 15·4-s − 5-s − 5·6-s + 35·8-s − 5·10-s − 11-s − 15·12-s − 13-s + 15-s + 70·16-s − 19-s − 15·20-s − 5·22-s − 35·24-s − 5·26-s − 29-s + 5·30-s + 126·32-s + 33-s − 37-s − 5·38-s + 39-s − 35·40-s − 41-s − 15·44-s + ⋯ |
L(s) = 1 | + 5·2-s − 3-s + 15·4-s − 5-s − 5·6-s + 35·8-s − 5·10-s − 11-s − 15·12-s − 13-s + 15-s + 70·16-s − 19-s − 15·20-s − 5·22-s − 35·24-s − 5·26-s − 29-s + 5·30-s + 126·32-s + 33-s − 37-s − 5·38-s + 39-s − 35·40-s − 41-s − 15·44-s + ⋯ |
Λ(s)=(=((215⋅1635)s/2ΓC(s)5L(s)Λ(1−s)
Λ(s)=(=((215⋅1635)s/2ΓC(s)5L(s)Λ(1−s)
Degree: |
10 |
Conductor: |
215⋅1635
|
Sign: |
1
|
Analytic conductor: |
0.116727 |
Root analytic conductor: |
0.806709 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ1304(325,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(10, 215⋅1635, ( :0,0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
17.99354384 |
L(21) |
≈ |
17.99354384 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)5 |
| 163 | C1 | (1−T)5 |
good | 3 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 5 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 7 | C1×C1 | (1−T)5(1+T)5 |
| 11 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 13 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 17 | C1×C1 | (1−T)5(1+T)5 |
| 19 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 23 | C1×C1 | (1−T)5(1+T)5 |
| 29 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 31 | C1×C1 | (1−T)5(1+T)5 |
| 37 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 41 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 43 | C1×C1 | (1−T)5(1+T)5 |
| 47 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 53 | C1×C1 | (1−T)5(1+T)5 |
| 59 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 61 | C1×C1 | (1−T)5(1+T)5 |
| 67 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 71 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 73 | C1×C1 | (1−T)5(1+T)5 |
| 79 | C1×C1 | (1−T)5(1+T)5 |
| 83 | C1×C1 | (1−T)5(1+T)5 |
| 89 | C1×C1 | (1−T)5(1+T)5 |
| 97 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.69550458013521488575610389028, −5.67339253879251392499874973422, −5.58711839830927816182622788364, −5.45369651440744799427916734818, −5.26986216128255403070173974495, −5.16205928780752946834742037975, −5.12511175921664206642588528737, −4.59163045550744044033544825358, −4.54744526291529868957369200104, −4.38678492240882684908836490886, −4.24103529500060714738287590218, −4.04191907951308337052558724396, −3.94200282677566409564013445744, −3.78860019094056842198598593270, −3.43149195583217359391445643443, −3.22506122010674913647964370861, −3.12116726266440893801343968522, −2.76287056834018055160439405415, −2.69534322685201740588308474433, −2.55433929013862000853122646330, −2.05378594073999999068355458779, −1.97478062792938487520406885512, −1.93455060978440383216460627740, −1.34508569576849823377576793347, −1.11302435206381325298402161645,
1.11302435206381325298402161645, 1.34508569576849823377576793347, 1.93455060978440383216460627740, 1.97478062792938487520406885512, 2.05378594073999999068355458779, 2.55433929013862000853122646330, 2.69534322685201740588308474433, 2.76287056834018055160439405415, 3.12116726266440893801343968522, 3.22506122010674913647964370861, 3.43149195583217359391445643443, 3.78860019094056842198598593270, 3.94200282677566409564013445744, 4.04191907951308337052558724396, 4.24103529500060714738287590218, 4.38678492240882684908836490886, 4.54744526291529868957369200104, 4.59163045550744044033544825358, 5.12511175921664206642588528737, 5.16205928780752946834742037975, 5.26986216128255403070173974495, 5.45369651440744799427916734818, 5.58711839830927816182622788364, 5.67339253879251392499874973422, 5.69550458013521488575610389028