L(s) = 1 | + 2-s − 5-s + 5·9-s − 10-s − 5·11-s + 13-s + 5·18-s − 5·22-s + 26-s − 31-s − 37-s + 41-s + 43-s − 5·45-s − 47-s + 5·49-s − 53-s + 5·55-s − 62-s − 65-s − 67-s − 74-s + 79-s + 15·81-s + 82-s + 83-s + 86-s + ⋯ |
L(s) = 1 | + 2-s − 5-s + 5·9-s − 10-s − 5·11-s + 13-s + 5·18-s − 5·22-s + 26-s − 31-s − 37-s + 41-s + 43-s − 5·45-s − 47-s + 5·49-s − 53-s + 5·55-s − 62-s − 65-s − 67-s − 74-s + 79-s + 15·81-s + 82-s + 83-s + 86-s + ⋯ |
Λ(s)=(=((115⋅1495)s/2ΓC(s)5L(s)Λ(1−s)
Λ(s)=(=((115⋅1495)s/2ΓC(s)5L(s)Λ(1−s)
Degree: |
10 |
Conductor: |
115⋅1495
|
Sign: |
1
|
Analytic conductor: |
0.366168 |
Root analytic conductor: |
0.904415 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ1639(1638,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(10, 115⋅1495, ( :0,0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
1.812186156 |
L(21) |
≈ |
1.812186156 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 11 | C1 | (1+T)5 |
| 149 | C1 | (1+T)5 |
good | 2 | C10 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
| 3 | C1×C1 | (1−T)5(1+T)5 |
| 5 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 7 | C1×C1 | (1−T)5(1+T)5 |
| 13 | C10 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
| 17 | C1×C1 | (1−T)5(1+T)5 |
| 19 | C1×C1 | (1−T)5(1+T)5 |
| 23 | C1×C1 | (1−T)5(1+T)5 |
| 29 | C1×C1 | (1−T)5(1+T)5 |
| 31 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 37 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 41 | C10 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
| 43 | C10 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
| 47 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 53 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 59 | C1×C1 | (1−T)5(1+T)5 |
| 61 | C1×C1 | (1−T)5(1+T)5 |
| 67 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 71 | C1×C1 | (1−T)5(1+T)5 |
| 73 | C1×C1 | (1−T)5(1+T)5 |
| 79 | C10 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
| 83 | C10 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
| 89 | C1×C1 | (1−T)5(1+T)5 |
| 97 | C1×C1 | (1−T)5(1+T)5 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.86333919393953720712630632781, −5.62797145858596236717231223954, −5.20587205014181923414961669936, −5.16523614008019721986931481547, −5.11513765964475771141380518312, −5.00459954430413315676488460533, −4.54684242912588496141258037579, −4.52226048389039171857772780611, −4.50926597363829723951203857267, −4.50855172360119910455989588297, −3.85533486886069327681159816252, −3.82586986607491225422158413863, −3.78977117293888369663500645147, −3.73007687175564729836919657127, −3.41687932666789020949594025352, −3.10721616634446961088516680114, −2.62503090041648857293157840730, −2.60574990946182001377128292025, −2.50111511526238545857425774303, −2.08574379024668778768221950481, −1.87058245062242554533984707957, −1.82687078923438995194039661081, −1.26586894372916836469215692354, −1.01891704136315221620127410073, −0.67966963927129155411086248780,
0.67966963927129155411086248780, 1.01891704136315221620127410073, 1.26586894372916836469215692354, 1.82687078923438995194039661081, 1.87058245062242554533984707957, 2.08574379024668778768221950481, 2.50111511526238545857425774303, 2.60574990946182001377128292025, 2.62503090041648857293157840730, 3.10721616634446961088516680114, 3.41687932666789020949594025352, 3.73007687175564729836919657127, 3.78977117293888369663500645147, 3.82586986607491225422158413863, 3.85533486886069327681159816252, 4.50855172360119910455989588297, 4.50926597363829723951203857267, 4.52226048389039171857772780611, 4.54684242912588496141258037579, 5.00459954430413315676488460533, 5.11513765964475771141380518312, 5.16523614008019721986931481547, 5.20587205014181923414961669936, 5.62797145858596236717231223954, 5.86333919393953720712630632781