Properties

Label 10-591e5-591.590-c0e5-0-1
Degree $10$
Conductor $7.210\times 10^{13}$
Sign $1$
Analytic cond. $0.00223214$
Root an. cond. $0.543090$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5·3-s − 5-s − 5·6-s − 7-s + 15·9-s + 10-s − 11-s + 14-s − 5·15-s − 17-s − 15·18-s − 19-s − 5·21-s + 22-s + 35·27-s + 5·30-s − 5·33-s + 34-s + 35-s − 37-s + 38-s + 5·42-s − 43-s − 15·45-s − 5·51-s − 35·54-s + ⋯
L(s)  = 1  − 2-s + 5·3-s − 5-s − 5·6-s − 7-s + 15·9-s + 10-s − 11-s + 14-s − 5·15-s − 17-s − 15·18-s − 19-s − 5·21-s + 22-s + 35·27-s + 5·30-s − 5·33-s + 34-s + 35-s − 37-s + 38-s + 5·42-s − 43-s − 15·45-s − 5·51-s − 35·54-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{5} \cdot 197^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{5} \cdot 197^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(3^{5} \cdot 197^{5}\)
Sign: $1$
Analytic conductor: \(0.00223214\)
Root analytic conductor: \(0.543090\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{591} (590, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 3^{5} \cdot 197^{5} ,\ ( \ : 0, 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.240864531\)
\(L(\frac12)\) \(\approx\) \(1.240864531\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{5} \)
197$C_1$ \( ( 1 - T )^{5} \)
good2$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
5$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
7$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
11$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
17$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
19$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
37$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
43$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
61$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
71$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
89$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
97$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.90982890423019141803039018365, −6.87179964416648458582562903539, −6.83835463497953047176918864658, −6.32919895151901999340199458956, −6.31538538301541073400568703538, −5.99257724283257570232639670503, −5.42369569191795396236866110225, −5.27126801929357672670714811071, −4.89246384572632318309812830885, −4.88055421624727734066880052540, −4.40036972344417240334454856703, −4.18550701066793006011325118947, −4.16243177774988857354199660172, −4.15553796664477471072882470712, −3.61001271427431092943992928193, −3.46464620374451226359127263808, −3.37579794647086645013551405443, −3.08302653378897140921481583928, −2.87167538293516623059451299215, −2.61041148005977183526182438709, −2.35137057756022469972169375500, −2.31264171519099436316359024194, −1.82708601027781497052058655860, −1.49978973244071203653125346655, −1.33724585627002362314425100504, 1.33724585627002362314425100504, 1.49978973244071203653125346655, 1.82708601027781497052058655860, 2.31264171519099436316359024194, 2.35137057756022469972169375500, 2.61041148005977183526182438709, 2.87167538293516623059451299215, 3.08302653378897140921481583928, 3.37579794647086645013551405443, 3.46464620374451226359127263808, 3.61001271427431092943992928193, 4.15553796664477471072882470712, 4.16243177774988857354199660172, 4.18550701066793006011325118947, 4.40036972344417240334454856703, 4.88055421624727734066880052540, 4.89246384572632318309812830885, 5.27126801929357672670714811071, 5.42369569191795396236866110225, 5.99257724283257570232639670503, 6.31538538301541073400568703538, 6.32919895151901999340199458956, 6.83835463497953047176918864658, 6.87179964416648458582562903539, 6.90982890423019141803039018365

Graph of the $Z$-function along the critical line