L(s) = 1 | − 24·2-s + 192·4-s − 110·5-s + 635·7-s + 1.02e3·8-s + 2.64e3·10-s + 548·11-s + 1.98e4·13-s − 1.52e4·14-s − 3.68e4·16-s + 2.09e4·17-s + 2.83e4·19-s − 2.11e4·20-s − 1.31e4·22-s + 3.27e4·23-s + 1.34e5·25-s − 4.77e5·26-s + 1.21e5·28-s − 2.34e5·29-s − 1.47e5·31-s + 2.94e5·32-s − 5.03e5·34-s − 6.98e4·35-s − 3.67e5·37-s − 6.81e5·38-s − 1.12e5·40-s + 2.87e6·41-s + ⋯ |
L(s) = 1 | − 2.12·2-s + 3/2·4-s − 0.393·5-s + 0.699·7-s + 0.707·8-s + 0.834·10-s + 0.124·11-s + 2.51·13-s − 1.48·14-s − 9/4·16-s + 1.03·17-s + 0.949·19-s − 0.590·20-s − 0.263·22-s + 0.560·23-s + 1.72·25-s − 5.32·26-s + 1.04·28-s − 1.78·29-s − 0.891·31-s + 1.59·32-s − 2.19·34-s − 0.275·35-s − 1.19·37-s − 2.01·38-s − 0.278·40-s + 6.51·41-s + ⋯ |
Λ(s)=(=((26⋅312⋅76)s/2ΓC(s)6L(s)Λ(8−s)
Λ(s)=(=((26⋅312⋅76)s/2ΓC(s+7/2)6L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
6.650618336 |
L(21) |
≈ |
6.650618336 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+p3T+p6T2)3 |
| 3 | 1 |
| 7 | 1−635T−72748pT2+667945p4T3−72748p8T4−635p14T5+p21T6 |
good | 5 | 1+22pT−24502pT2−6966776pT3+194927678p2T4+67954540106p2T5+3210602234854p2T6+67954540106p9T7+194927678p16T8−6966776p22T9−24502p29T10+22p36T11+p42T12 |
| 11 | 1−548T−4276622T2−160652942204T3−24911416435726T4+22869026595445016pT5+16⋯26p2T6+22869026595445016p8T7−24911416435726p14T8−160652942204p21T9−4276622p28T10−548p35T11+p42T12 |
| 13 | (1−9949T+49691323T2+136109955742T3+49691323p7T4−9949p14T5+p21T6)2 |
| 17 | 1−20972T−705540803T2+6376043535148T3+523135254353192486T4−12⋯16T5−24⋯03T6−12⋯16p7T7+523135254353192486p14T8+6376043535148p21T9−705540803p28T10−20972p35T11+p42T12 |
| 19 | 1−28383T−1114469436T2+54482095066865T3+423775802745621540T4−15⋯97pT5+12⋯54p2T6−15⋯97p8T7+423775802745621540p14T8+54482095066865p21T9−1114469436p28T10−28383p35T11+p42T12 |
| 23 | 1−32732T−4257974405T2+384004545798916T3+1117012122760959974T4−67⋯44T5+47⋯87T6−67⋯44p7T7+1117012122760959974p14T8+384004545798916p21T9−4257974405p28T10−32732p35T11+p42T12 |
| 29 | (1+117088T+32964581490T2+4122277361969500T3+32964581490p7T4+117088p14T5+p21T6)2 |
| 31 | 1+147865T+804539397T2+5946198810653250T3+73494989034467037151T4−89⋯95T5+14⋯38T6−89⋯95p7T7+73494989034467037151p14T8+5946198810653250p21T9+804539397p28T10+147865p35T11+p42T12 |
| 37 | 1+367503T−25474888698T2+9103014313145033T3+13⋯36T4−38⋯61T5−13⋯08T6−38⋯61p7T7+13⋯36p14T8+9103014313145033p21T9−25474888698p28T10+367503p35T11+p42T12 |
| 41 | (1−1437954T+1203779247675T2−639058142642674020T3+1203779247675p7T4−1437954p14T5+p21T6)2 |
| 43 | (1−749397T+509340737649T2−170374599838662482T3+509340737649p7T4−749397p14T5+p21T6)2 |
| 47 | 1+741486T−864917943045T2−363526634183852922T3+76⋯34T4+12⋯42T5−39⋯57T6+12⋯42p7T7+76⋯34p14T8−363526634183852922p21T9−864917943045p28T10+741486p35T11+p42T12 |
| 53 | 1+1032432T−2372684155170T2−1282239454997266536T3+52⋯54T4+13⋯84T5−62⋯98T6+13⋯84p7T7+52⋯54p14T8−1282239454997266536p21T9−2372684155170p28T10+1032432p35T11+p42T12 |
| 59 | 1+2389238T−54827765486T2−423685096884345220T3+19⋯90T4−12⋯02T5−36⋯66T6−12⋯02p7T7+19⋯90p14T8−423685096884345220p21T9−54827765486p28T10+2389238p35T11+p42T12 |
| 61 | 1+1238746T−3495698274519T2−5946787860873446010T3+19⋯30T4+36⋯66T5+44⋯41T6+36⋯66p7T7+19⋯30p14T8−5946787860873446010p21T9−3495698274519p28T10+1238746p35T11+p42T12 |
| 67 | 1−2462497T−13268883047308T2+11883615447576942903T3+18⋯76T4−88⋯01T5−11⋯98T6−88⋯01p7T7+18⋯76p14T8+11883615447576942903p21T9−13268883047308p28T10−2462497p35T11+p42T12 |
| 71 | (1−636262T+18637597322721T2−19723903310040373948T3+18637597322721p7T4−636262p14T5+p21T6)2 |
| 73 | 1+4609961T−504249505402T2+439056397955388279T3+28⋯16T4−56⋯07T5−26⋯12T6−56⋯07p7T7+28⋯16p14T8+439056397955388279p21T9−504249505402p28T10+4609961p35T11+p42T12 |
| 79 | 1−6152849T−9996162298563T2+91000866673663082982T3+18⋯79T4−18⋯97T5−66⋯06T6−18⋯97p7T7+18⋯79p14T8+91000866673663082982p21T9−9996162298563p28T10−6152849p35T11+p42T12 |
| 83 | (1−12029884T+1146704654226pT2−54⋯38T3+1146704654226p8T4−12029884p14T5+p21T6)2 |
| 89 | 1−10646976T−54532854429783T2+16⋯68T3+11⋯46pT4−26⋯28T5−34⋯11T6−26⋯28p7T7+11⋯46p15T8+16⋯68p21T9−54532854429783p28T10−10646976p35T11+p42T12 |
| 97 | (1−2281472T+178988504234792T2−22⋯46T3+178988504234792p7T4−2281472p14T5+p21T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.01973626278208092471213158021, −5.83166757748642801540207606544, −5.58211952386985561247781427824, −5.57218265079979756354541860092, −5.22935485224327541944287031491, −5.05739046439857781105933604082, −4.62631315490536333618286752295, −4.31238868873235493760234174345, −4.27723869605522784613479980349, −4.20767994870684937214676651382, −3.70247488275758409797491554616, −3.52893136519863071412030627101, −3.42456934179565188840308524022, −3.16796976258846330522294123548, −2.53960548936687602932248939393, −2.49664301078676126355645984811, −2.44514059241400705087522557982, −1.66757975580888226144647376085, −1.56925752569469154549875158329, −1.44712759021640165564308646118, −1.17353125681665586864323362846, −0.74733985993735758465978392881, −0.66595292770718486017135440211, −0.66449043974912199091388707117, −0.39601269354382914309386226796,
0.39601269354382914309386226796, 0.66449043974912199091388707117, 0.66595292770718486017135440211, 0.74733985993735758465978392881, 1.17353125681665586864323362846, 1.44712759021640165564308646118, 1.56925752569469154549875158329, 1.66757975580888226144647376085, 2.44514059241400705087522557982, 2.49664301078676126355645984811, 2.53960548936687602932248939393, 3.16796976258846330522294123548, 3.42456934179565188840308524022, 3.52893136519863071412030627101, 3.70247488275758409797491554616, 4.20767994870684937214676651382, 4.27723869605522784613479980349, 4.31238868873235493760234174345, 4.62631315490536333618286752295, 5.05739046439857781105933604082, 5.22935485224327541944287031491, 5.57218265079979756354541860092, 5.58211952386985561247781427824, 5.83166757748642801540207606544, 6.01973626278208092471213158021
Plot not available for L-functions of degree greater than 10.