L(s) = 1 | − 6·3-s + 8-s + 21·9-s − 6·24-s − 55·27-s + 6·41-s − 3·49-s − 3·59-s + 3·67-s + 21·72-s + 3·73-s + 120·81-s + 3·97-s + 6·107-s − 36·123-s + 127-s + 131-s + 137-s + 139-s + 18·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 18·177-s + ⋯ |
L(s) = 1 | − 6·3-s + 8-s + 21·9-s − 6·24-s − 55·27-s + 6·41-s − 3·49-s − 3·59-s + 3·67-s + 21·72-s + 3·73-s + 120·81-s + 3·97-s + 6·107-s − 36·123-s + 127-s + 131-s + 137-s + 139-s + 18·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 18·177-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 5^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4373567200\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4373567200\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{3} + T^{6} \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T^{3} + T^{6} \) |
good | 3 | \( ( 1 + T )^{6}( 1 - T^{3} + T^{6} ) \) |
| 7 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 11 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 13 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 17 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 23 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 29 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 31 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 37 | \( ( 1 - T )^{6}( 1 + T )^{6} \) |
| 41 | \( ( 1 - T )^{6}( 1 + T^{3} + T^{6} ) \) |
| 43 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 47 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 53 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 59 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
| 61 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 67 | \( ( 1 - T + T^{2} )^{3}( 1 - T^{3} + T^{6} ) \) |
| 71 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 73 | \( ( 1 - T + T^{2} )^{3}( 1 - T^{3} + T^{6} ) \) |
| 79 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 83 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 89 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 97 | \( ( 1 - T + T^{2} )^{3}( 1 - T^{3} + T^{6} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.65588623403090266911680122197, −4.53440605318215059845970878353, −4.45452884919507975297115695901, −4.38417401003492059285509340524, −4.30105730120281373904677862784, −4.08611119879870587017480992804, −4.04082048391047313774880645067, −3.61280674962931583743874246866, −3.37659520587155956345329470465, −3.37616031694706102480738190385, −3.32494972547290781847087915164, −3.28108941571175036622815203704, −2.85705350107394372737111342598, −2.26514056137762521908302021417, −2.24588040020576349407323000242, −2.15419658212726388349431128931, −2.05552982932751691187882542096, −1.83259384862959404810141391154, −1.67424212192426977264743411018, −1.42759487613721642894819643118, −1.15853950373466430246170786952, −0.856843530204907589373333334017, −0.75136841781040699102854412938, −0.73053505432368097083646628390, −0.61065719934470144284918960642,
0.61065719934470144284918960642, 0.73053505432368097083646628390, 0.75136841781040699102854412938, 0.856843530204907589373333334017, 1.15853950373466430246170786952, 1.42759487613721642894819643118, 1.67424212192426977264743411018, 1.83259384862959404810141391154, 2.05552982932751691187882542096, 2.15419658212726388349431128931, 2.24588040020576349407323000242, 2.26514056137762521908302021417, 2.85705350107394372737111342598, 3.28108941571175036622815203704, 3.32494972547290781847087915164, 3.37616031694706102480738190385, 3.37659520587155956345329470465, 3.61280674962931583743874246866, 4.04082048391047313774880645067, 4.08611119879870587017480992804, 4.30105730120281373904677862784, 4.38417401003492059285509340524, 4.45452884919507975297115695901, 4.53440605318215059845970878353, 4.65588623403090266911680122197
Plot not available for L-functions of degree greater than 10.