L(s) = 1 | + 4·3-s + 4·5-s + 6·7-s + 3·9-s + 8·11-s + 8·13-s + 16·15-s − 6·17-s + 6·19-s + 24·21-s + 18·23-s − 25-s − 6·27-s − 8·29-s − 4·31-s + 32·33-s + 24·35-s − 8·37-s + 32·39-s + 16·41-s + 12·43-s + 12·45-s + 18·47-s + 21·49-s − 24·51-s − 2·53-s + 32·55-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 1.78·5-s + 2.26·7-s + 9-s + 2.41·11-s + 2.21·13-s + 4.13·15-s − 1.45·17-s + 1.37·19-s + 5.23·21-s + 3.75·23-s − 1/5·25-s − 1.15·27-s − 1.48·29-s − 0.718·31-s + 5.57·33-s + 4.05·35-s − 1.31·37-s + 5.12·39-s + 2.49·41-s + 1.82·43-s + 1.78·45-s + 2.62·47-s + 3·49-s − 3.36·51-s − 0.274·53-s + 4.31·55-s + ⋯ |
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
192.8957297 |
L(21) |
≈ |
192.8957297 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | (1−T)6 |
| 17 | (1+T)6 |
good | 3 | 1−4T+13T2−34T3+26pT4−164T5+304T6−164pT7+26p3T8−34p3T9+13p4T10−4p5T11+p6T12 |
| 5 | 1−4T+17T2−38T3+24pT4−216T5+616T6−216pT7+24p3T8−38p3T9+17p4T10−4p5T11+p6T12 |
| 11 | 1−8T+64T2−316T3+1571T4−5772T5+21704T6−5772pT7+1571p2T8−316p3T9+64p4T10−8p5T11+p6T12 |
| 13 | 1−8T+56T2−252T3+1139T4−3820T5+14824T6−3820pT7+1139p2T8−252p3T9+56p4T10−8p5T11+p6T12 |
| 19 | 1−6T+106T2−510T3+4803T4−18304T5+119684T6−18304pT7+4803p2T8−510p3T9+106p4T10−6p5T11+p6T12 |
| 23 | 1−18T+250T2−102pT3+18403T4−114008T5+606116T6−114008pT7+18403p2T8−102p4T9+250p4T10−18p5T11+p6T12 |
| 29 | 1+8T+72T2+500T3+4203T4+21724T5+130584T6+21724pT7+4203p2T8+500p3T9+72p4T10+8p5T11+p6T12 |
| 31 | 1+4T+91T2+386T3+4658T4+19242T5+161892T6+19242pT7+4658p2T8+386p3T9+91p4T10+4p5T11+p6T12 |
| 37 | 1+8T+170T2+1148T3+13347T4+74676T5+624612T6+74676pT7+13347p2T8+1148p3T9+170p4T10+8p5T11+p6T12 |
| 41 | 1−16T+193T2−1934T3+18548T4−136730T5+924660T6−136730pT7+18548p2T8−1934p3T9+193p4T10−16p5T11+p6T12 |
| 43 | 1−12T+141T2−32pT3+10410T4−71640T5+524920T6−71640pT7+10410p2T8−32p4T9+141p4T10−12p5T11+p6T12 |
| 47 | 1−18T+320T2−3582T3+37667T4−6596pT5+2354680T6−6596p2T7+37667p2T8−3582p3T9+320p4T10−18p5T11+p6T12 |
| 53 | 1+2T+157T2+52T3+14528T4+2178T5+17548pT6+2178pT7+14528p2T8+52p3T9+157p4T10+2p5T11+p6T12 |
| 59 | 1−16T+358T2−4048T3+52039T4−438144T5+4059220T6−438144pT7+52039p2T8−4048p3T9+358p4T10−16p5T11+p6T12 |
| 61 | 1−6T+213T2−750T3+21092T4−53490T5+1483288T6−53490pT7+21092p2T8−750p3T9+213p4T10−6p5T11+p6T12 |
| 67 | 1−12T+247T2−2840T3+33674T4−304768T5+2894388T6−304768pT7+33674p2T8−2840p3T9+247p4T10−12p5T11+p6T12 |
| 71 | 1+2T+150T2−614T3+12491T4−73880T5+1138268T6−73880pT7+12491p2T8−614p3T9+150p4T10+2p5T11+p6T12 |
| 73 | 1−8T+161T2−1310T3+11180T4−115922T5+573412T6−115922pT7+11180p2T8−1310p3T9+161p4T10−8p5T11+p6T12 |
| 79 | 1+18T+288T2+2302T3+24499T4+167772T5+2003480T6+167772pT7+24499p2T8+2302p3T9+288p4T10+18p5T11+p6T12 |
| 83 | 1−28T+624T2−10128T3+136411T4−1560116T5+15237096T6−1560116pT7+136411p2T8−10128p3T9+624p4T10−28p5T11+p6T12 |
| 89 | 1+2T+380T2+530T3+70659T4+76140T5+7900736T6+76140pT7+70659p2T8+530p3T9+380p4T10+2p5T11+p6T12 |
| 97 | 1+18T+537T2+7646T3+124332T4+1388888T5+15835972T6+1388888pT7+124332p2T8+7646p3T9+537p4T10+18p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.11625244001601457786529108078, −4.10207269389219638472301980362, −4.06052625169988615320999152533, −3.88929291074873666133970829246, −3.87709771385512916219780849497, −3.65631802320396844894244554111, −3.57616133006817088611326683391, −3.27311350614320822700294330847, −3.16501878222752860108265975915, −2.98211709314446437782102382137, −2.82725595342919054570743658126, −2.75943651728509294832177774746, −2.68892715145109033232233148226, −2.34326434697725104640803437394, −2.08025920097999169492943297324, −2.07699634726073209072498801487, −1.97286296963843621883810294137, −1.86356518299678695951201277505, −1.71686010631985819566886202780, −1.46194624766015277001237384911, −1.16598987010097829758141949310, −0.978888938983805615210256949315, −0.850227496460415026977711207811, −0.73022592794415503579622005126, −0.66353426530292426963187070118,
0.66353426530292426963187070118, 0.73022592794415503579622005126, 0.850227496460415026977711207811, 0.978888938983805615210256949315, 1.16598987010097829758141949310, 1.46194624766015277001237384911, 1.71686010631985819566886202780, 1.86356518299678695951201277505, 1.97286296963843621883810294137, 2.07699634726073209072498801487, 2.08025920097999169492943297324, 2.34326434697725104640803437394, 2.68892715145109033232233148226, 2.75943651728509294832177774746, 2.82725595342919054570743658126, 2.98211709314446437782102382137, 3.16501878222752860108265975915, 3.27311350614320822700294330847, 3.57616133006817088611326683391, 3.65631802320396844894244554111, 3.87709771385512916219780849497, 3.88929291074873666133970829246, 4.06052625169988615320999152533, 4.10207269389219638472301980362, 4.11625244001601457786529108078
Plot not available for L-functions of degree greater than 10.