L(s) = 1 | + 2·3-s − 6·5-s − 6·7-s − 5·9-s + 2·11-s − 4·13-s − 12·15-s − 6·17-s + 10·19-s − 12·21-s − 4·23-s + 5·25-s − 12·27-s − 14·29-s − 8·31-s + 4·33-s + 36·35-s − 4·37-s − 8·39-s − 2·41-s + 8·43-s + 30·45-s + 2·47-s + 21·49-s − 12·51-s − 10·53-s − 12·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 2.68·5-s − 2.26·7-s − 5/3·9-s + 0.603·11-s − 1.10·13-s − 3.09·15-s − 1.45·17-s + 2.29·19-s − 2.61·21-s − 0.834·23-s + 25-s − 2.30·27-s − 2.59·29-s − 1.43·31-s + 0.696·33-s + 6.08·35-s − 0.657·37-s − 1.28·39-s − 0.312·41-s + 1.21·43-s + 4.47·45-s + 0.291·47-s + 3·49-s − 1.68·51-s − 1.37·53-s − 1.61·55-s + ⋯ |
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | (1+T)6 |
| 17 | (1+T)6 |
good | 3 | 1−2T+p2T2−16T3+16pT4−68T5+56pT6−68pT7+16p3T8−16p3T9+p6T10−2p5T11+p6T12 |
| 5 | 1+6T+31T2+122T3+16p2T4+1106T5+2688T6+1106pT7+16p4T8+122p3T9+31p4T10+6p5T11+p6T12 |
| 11 | 1−2T+32T2−18T3+515T4+40T5+6232T6+40pT7+515p2T8−18p3T9+32p4T10−2p5T11+p6T12 |
| 13 | 1+4T+4pT2+116T3+971T4+80pT5+12048T6+80p2T7+971p2T8+116p3T9+4p5T10+4p5T11+p6T12 |
| 19 | 1−10T+82T2−326T3+1027T4+852T5−6444T6+852pT7+1027p2T8−326p3T9+82p4T10−10p5T11+p6T12 |
| 23 | 1+4T+2pT2+148T3+1163T4+2656T5+23980T6+2656pT7+1163p2T8+148p3T9+2p5T10+4p5T11+p6T12 |
| 29 | 1+14T+220T2+1906T3+17179T4+106472T5+675888T6+106472pT7+17179p2T8+1906p3T9+220p4T10+14p5T11+p6T12 |
| 31 | 1+8T+89T2+664T3+4656T4+25704T5+169068T6+25704pT7+4656p2T8+664p3T9+89p4T10+8p5T11+p6T12 |
| 37 | 1+4T+122T2+500T3+8227T4+28312T5+365892T6+28312pT7+8227p2T8+500p3T9+122p4T10+4p5T11+p6T12 |
| 41 | 1+2T+195T2+182T3+16804T4+6552T5+861264T6+6552pT7+16804p2T8+182p3T9+195p4T10+2p5T11+p6T12 |
| 43 | 1−8T+187T2−1114T3+16156T4−78342T5+862296T6−78342pT7+16156p2T8−1114p3T9+187p4T10−8p5T11+p6T12 |
| 47 | 1−2T+192T2−250T3+17923T4−17448T5+1041080T6−17448pT7+17923p2T8−250p3T9+192p4T10−2p5T11+p6T12 |
| 53 | 1+10T+225T2+1956T3+23880T4+174814T5+1566748T6+174814pT7+23880p2T8+1956p3T9+225p4T10+10p5T11+p6T12 |
| 59 | 1−14T+214T2−2370T3+25991T4−223436T5+1918964T6−223436pT7+25991p2T8−2370p3T9+214p4T10−14p5T11+p6T12 |
| 61 | 1+20T+263T2+1898T3+3984T4−82348T5−1046808T6−82348pT7+3984p2T8+1898p3T9+263p4T10+20p5T11+p6T12 |
| 67 | 1−6T+271T2−1610T3+35028T4−188628T5+2861664T6−188628pT7+35028p2T8−1610p3T9+271p4T10−6p5T11+p6T12 |
| 71 | 1+20T+446T2+5884T3+79003T4+765512T5+7422124T6+765512pT7+79003p2T8+5884p3T9+446p4T10+20p5T11+p6T12 |
| 73 | 1+6T+347T2+1634T3+53720T4+200976T5+4919912T6+200976pT7+53720p2T8+1634p3T9+347p4T10+6p5T11+p6T12 |
| 79 | 1+38T+740T2+9566T3+97155T4+876392T5+7764912T6+876392pT7+97155p2T8+9566p3T9+740p4T10+38p5T11+p6T12 |
| 83 | 1−16T+376T2−5088T3+66491T4−748248T5+7035736T6−748248pT7+66491p2T8−5088p3T9+376p4T10−16p5T11+p6T12 |
| 89 | 1+2T+196T2−1210T3+25163T4−107880T5+3544352T6−107880pT7+25163p2T8−1210p3T9+196p4T10+2p5T11+p6T12 |
| 97 | 1+12T+435T2+4682T3+89128T4+812778T5+10912024T6+812778pT7+89128p2T8+4682p3T9+435p4T10+12p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.68988468230978140532815495230, −4.48085928532999538008344230528, −4.26164874240943837375038611753, −4.18198948711529641343310973155, −4.14916377796797257388094119950, −4.03955590068256630080634915285, −3.95744246604668837048185629908, −3.76890133138156239608886851705, −3.55275701668609376636345551378, −3.51311772738782730522167282922, −3.38222716255013513359990443942, −3.32156312193299551930375717380, −3.11700656696090303244193741452, −2.92667837783300233222455776100, −2.72074148856322114960099326989, −2.62368430784210112605618436452, −2.57942132105659418605102994758, −2.43064576003601370561302715364, −2.35403189183865894639525150762, −1.88087861536073928105515110741, −1.75881643655682183272083048447, −1.62998570287081830709253050734, −1.28650857694416440978908914032, −1.07078851395833386115171509513, −1.03480855013030031661941402520, 0, 0, 0, 0, 0, 0,
1.03480855013030031661941402520, 1.07078851395833386115171509513, 1.28650857694416440978908914032, 1.62998570287081830709253050734, 1.75881643655682183272083048447, 1.88087861536073928105515110741, 2.35403189183865894639525150762, 2.43064576003601370561302715364, 2.57942132105659418605102994758, 2.62368430784210112605618436452, 2.72074148856322114960099326989, 2.92667837783300233222455776100, 3.11700656696090303244193741452, 3.32156312193299551930375717380, 3.38222716255013513359990443942, 3.51311772738782730522167282922, 3.55275701668609376636345551378, 3.76890133138156239608886851705, 3.95744246604668837048185629908, 4.03955590068256630080634915285, 4.14916377796797257388094119950, 4.18198948711529641343310973155, 4.26164874240943837375038611753, 4.48085928532999538008344230528, 4.68988468230978140532815495230
Plot not available for L-functions of degree greater than 10.