L(s) = 1 | + 2·2-s − 4·3-s + 2·4-s − 5·5-s − 8·6-s + 7·9-s − 10·10-s + 4·11-s − 8·12-s − 6·13-s + 20·15-s − 4·17-s + 14·18-s − 7·19-s − 10·20-s + 8·22-s − 23-s + 18·25-s − 12·26-s − 14·29-s + 40·30-s + 3·31-s + 4·32-s − 16·33-s − 8·34-s + 14·36-s + 10·37-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 2.30·3-s + 4-s − 2.23·5-s − 3.26·6-s + 7/3·9-s − 3.16·10-s + 1.20·11-s − 2.30·12-s − 1.66·13-s + 5.16·15-s − 0.970·17-s + 3.29·18-s − 1.60·19-s − 2.23·20-s + 1.70·22-s − 0.208·23-s + 18/5·25-s − 2.35·26-s − 2.59·29-s + 7.30·30-s + 0.538·31-s + 0.707·32-s − 2.78·33-s − 1.37·34-s + 7/3·36-s + 1.64·37-s + ⋯ |
Λ(s)=(=((712⋅136)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((712⋅136)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4038861247 |
L(21) |
≈ |
0.4038861247 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | (1+T)6 |
good | 2 | 1−pT+pT2−p2T4+p2T5−p2T6+p3T7−p4T8+p5T10−p6T11+p6T12 |
| 3 | 1+4T+p2T2+8T3−4pT4−62T5−137T6−62pT7−4p3T8+8p3T9+p6T10+4p5T11+p6T12 |
| 5 | 1+pT+7T2+4T3+19T4−T5−146T6−pT7+19p2T8+4p3T9+7p4T10+p6T11+p6T12 |
| 11 | 1−4T−17T2+40T3+382T4−38pT5−3857T6−38p2T7+382p2T8+40p3T9−17p4T10−4p5T11+p6T12 |
| 17 | 1+4T−33T2−48T3+1080T4+470T5−20731T6+470pT7+1080p2T8−48p3T9−33p4T10+4p5T11+p6T12 |
| 19 | 1+7T−5T2−28T3+469T4−875T5−18166T6−875pT7+469p2T8−28p3T9−5p4T10+7p5T11+p6T12 |
| 23 | 1+T−27T2−150T3+51T4+1733T5+13694T6+1733pT7+51p2T8−150p3T9−27p4T10+p5T11+p6T12 |
| 29 | (1+7T+74T2+403T3+74pT4+7p2T5+p3T6)2 |
| 31 | 1−3T−43T2+118T3+681T4−335T5−14122T6−335pT7+681p2T8+118p3T9−43p4T10−3p5T11+p6T12 |
| 37 | 1−10T−19T2+126T3+3178T4−3932T5−126587T6−3932pT7+3178p2T8+126p3T9−19p4T10−10p5T11+p6T12 |
| 41 | (1−6T+7T2+12T3+7pT4−6p2T5+p3T6)2 |
| 43 | (1−9T+124T2−673T3+124pT4−9p2T5+p3T6)2 |
| 47 | 1+17T+59T2+420T3+12425T4+71363T5+127970T6+71363pT7+12425p2T8+420p3T9+59p4T10+17p5T11+p6T12 |
| 53 | 1+13T−29T2−164T3+10913T4+34735T5−380618T6+34735pT7+10913p2T8−164p3T9−29p4T10+13p5T11+p6T12 |
| 59 | 1+22T+163T2+1366T3+21446T4+157474T5+757639T6+157474pT7+21446p2T8+1366p3T9+163p4T10+22p5T11+p6T12 |
| 61 | 1−24T+233T2−1928T3+21078T4−166136T5+1069181T6−166136pT7+21078p2T8−1928p3T9+233p4T10−24p5T11+p6T12 |
| 67 | 1−14T+31T2+146T3−1022T4+44074T5−594409T6+44074pT7−1022p2T8+146p3T9+31p4T10−14p5T11+p6T12 |
| 71 | (1−4T+169T2−374T3+169pT4−4p2T5+p3T6)2 |
| 73 | 1+5T+25T2+1662T3+4155T4+5p2T5+1335370T6+5p3T7+4155p2T8+1662p3T9+25p4T10+5p5T11+p6T12 |
| 79 | 1+T−167T2−346T3+14695T4+22873T5−1183810T6+22873pT7+14695p2T8−346p3T9−167p4T10+p5T11+p6T12 |
| 83 | (1−23T+376T2−4021T3+376pT4−23p2T5+p3T6)2 |
| 89 | 1−11T−91T2+1626T3+4307T4−91583T5+367922T6−91583pT7+4307p2T8+1626p3T9−91p4T10−11p5T11+p6T12 |
| 97 | (1+3T+220T2+575T3+220pT4+3p2T5+p3T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.68603173571458807222172193263, −5.63950365973091143030525576815, −5.07571938015031445044820164257, −5.03660732250445029573639450357, −4.84600175098474077328786385672, −4.81116395692576187879968197717, −4.66594180245265279257420702879, −4.64691595290980830789121951508, −4.43055169186965200662577830710, −4.13365207863155134252920858907, −3.79277665833716766049605035926, −3.76513866867843848473978182481, −3.70627955530079397523053057805, −3.64314792404633435687460281059, −3.29069334475054533268532651372, −2.92005616738070379685673315941, −2.73043287485785794978781421092, −2.41278615077544224271228918786, −2.39634611083228809038662027370, −2.07830902742602164839761354412, −1.82461341601746379129452685230, −1.09603677917384233727651398137, −1.00785018681790447091423011225, −0.61706031465123877403041645720, −0.19524746124879706762616610652,
0.19524746124879706762616610652, 0.61706031465123877403041645720, 1.00785018681790447091423011225, 1.09603677917384233727651398137, 1.82461341601746379129452685230, 2.07830902742602164839761354412, 2.39634611083228809038662027370, 2.41278615077544224271228918786, 2.73043287485785794978781421092, 2.92005616738070379685673315941, 3.29069334475054533268532651372, 3.64314792404633435687460281059, 3.70627955530079397523053057805, 3.76513866867843848473978182481, 3.79277665833716766049605035926, 4.13365207863155134252920858907, 4.43055169186965200662577830710, 4.64691595290980830789121951508, 4.66594180245265279257420702879, 4.81116395692576187879968197717, 4.84600175098474077328786385672, 5.03660732250445029573639450357, 5.07571938015031445044820164257, 5.63950365973091143030525576815, 5.68603173571458807222172193263
Plot not available for L-functions of degree greater than 10.