L(s) = 1 | + 2·2-s − 2·4-s + 2·7-s − 6·8-s + 7·11-s + 3·13-s + 4·14-s − 16-s + 7·17-s − 7·19-s + 14·22-s + 18·23-s − 20·25-s + 6·26-s − 4·28-s + 14·29-s − 8·31-s + 4·32-s + 14·34-s − 2·37-s − 14·38-s + 18·41-s − 4·43-s − 14·44-s + 36·46-s + 10·47-s − 28·49-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 4-s + 0.755·7-s − 2.12·8-s + 2.11·11-s + 0.832·13-s + 1.06·14-s − 1/4·16-s + 1.69·17-s − 1.60·19-s + 2.98·22-s + 3.75·23-s − 4·25-s + 1.17·26-s − 0.755·28-s + 2.59·29-s − 1.43·31-s + 0.707·32-s + 2.40·34-s − 0.328·37-s − 2.27·38-s + 2.81·41-s − 0.609·43-s − 2.11·44-s + 5.30·46-s + 1.45·47-s − 4·49-s + ⋯ |
Λ(s)=(=((314⋅117⋅197)s/2ΓC(s)7L(s)Λ(2−s)
Λ(s)=(=((314⋅117⋅197)s/2ΓC(s+1/2)7L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
26.11347717 |
L(21) |
≈ |
26.11347717 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | (1−T)7 |
| 19 | (1+T)7 |
good | 2 | 1−pT+3pT2−5pT3+21T4−p5T5+55T6−39pT7+55pT8−p7T9+21p3T10−5p5T11+3p6T12−p7T13+p7T14 |
| 5 | 1+4pT2+8T3+42pT4+104T5+1496T6+662T7+1496pT8+104p2T9+42p4T10+8p4T11+4p6T12+p7T14 |
| 7 | 1−2T+32T2−62T3+534T4−902T5+5580T6−7976T7+5580pT8−902p2T9+534p3T10−62p4T11+32p5T12−2p6T13+p7T14 |
| 13 | 1−3T+4pT2−167T3+1464T4−4317T5+27662T6−68781T7+27662pT8−4317p2T9+1464p3T10−167p4T11+4p6T12−3p6T13+p7T14 |
| 17 | 1−7T+75T2−292T3+1692T4−3046T5+16149T6−5591T7+16149pT8−3046p2T9+1692p3T10−292p4T11+75p5T12−7p6T13+p7T14 |
| 23 | 1−18T+250T2−2456T3+20475T4−139784T5+837561T6−4269484T7+837561pT8−139784p2T9+20475p3T10−2456p4T11+250p5T12−18p6T13+p7T14 |
| 29 | 1−14T+207T2−1678T3+13600T4−76898T5+469825T6−2314678T7+469825pT8−76898p2T9+13600p3T10−1678p4T11+207p5T12−14p6T13+p7T14 |
| 31 | 1+8T+127T2+546T3+6732T4+24318T5+295517T6+968768T7+295517pT8+24318p2T9+6732p3T10+546p4T11+127p5T12+8p6T13+p7T14 |
| 37 | 1+2T+168T2+88T3+12985T4−6784T5+643605T6−553156T7+643605pT8−6784p2T9+12985p3T10+88p4T11+168p5T12+2p6T13+p7T14 |
| 41 | 1−18T+330T2−3598T3+38232T4−305214T5+2408210T6−15423692T7+2408210pT8−305214p2T9+38232p3T10−3598p4T11+330p5T12−18p6T13+p7T14 |
| 43 | 1+4T+121T2+138T3+6656T4−1626T5+349013T6−19992T7+349013pT8−1626p2T9+6656p3T10+138p4T11+121p5T12+4p6T13+p7T14 |
| 47 | 1−10T+169T2−498T3+6964T4+13746T5+308671T6+722962T7+308671pT8+13746p2T9+6964p3T10−498p4T11+169p5T12−10p6T13+p7T14 |
| 53 | 1−23T+399T2−4428T3+43616T4−334702T5+2604471T6−17887421T7+2604471pT8−334702p2T9+43616p3T10−4428p4T11+399p5T12−23p6T13+p7T14 |
| 59 | 1−15T+376T2−3565T3+51380T4−348761T5+3987278T6−22528211T7+3987278pT8−348761p2T9+51380p3T10−3565p4T11+376p5T12−15p6T13+p7T14 |
| 61 | 1−12T+362T2−2844T3+50298T4−275584T5+4043948T6−17899330T7+4043948pT8−275584p2T9+50298p3T10−2844p4T11+362p5T12−12p6T13+p7T14 |
| 67 | 1+6T+188T2+2642T3+23796T4+306650T5+3040264T6+20691976T7+3040264pT8+306650p2T9+23796p3T10+2642p4T11+188p5T12+6p6T13+p7T14 |
| 71 | 1−39T+1033T2−19420T3+297470T4−3723376T5+39822981T6−360875937T7+39822981pT8−3723376p2T9+297470p3T10−19420p4T11+1033p5T12−39p6T13+p7T14 |
| 73 | 1+4T+433T2+1378T3+84678T4+217302T5+9725129T6+20117620T7+9725129pT8+217302p2T9+84678p3T10+1378p4T11+433p5T12+4p6T13+p7T14 |
| 79 | 1−21T+567T2−106pT3+133576T4−1497888T5+17422579T6−152791853T7+17422579pT8−1497888p2T9+133576p3T10−106p5T11+567p5T12−21p6T13+p7T14 |
| 83 | 1−15T+414T2−4607T3+68030T4−624005T5+6744800T6−57163121T7+6744800pT8−624005p2T9+68030p3T10−4607p4T11+414p5T12−15p6T13+p7T14 |
| 89 | 1−13T+401T2−5034T3+85044T4−902320T5+11588685T6−98948575T7+11588685pT8−902320p2T9+85044p3T10−5034p4T11+401p5T12−13p6T13+p7T14 |
| 97 | 1+4T+209T2+1362T3+35936T4+254438T5+4487773T6+27053728T7+4487773pT8+254438p2T9+35936p3T10+1362p4T11+209p5T12+4p6T13+p7T14 |
show more | |
show less | |
L(s)=p∏ j=1∏14(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.32423457717477854872680787337, −4.23772515332942656249178921838, −4.09361894890067103364869562717, −3.97373644405628991896590119856, −3.65929456737270177859443667004, −3.63802659008398983633233615074, −3.59478924863030054221177332663, −3.42387014926094513277114877021, −3.42374169207616093391104773936, −3.31671748581748399603682858719, −2.89803824266721195106099238268, −2.84785314088186182278795014423, −2.46821678307035284204214865241, −2.45539372791089766333096787716, −2.38183794725398940136413427448, −1.94095112426756435184080673079, −1.90717743731700716161288814707, −1.90107182878510573559145157483, −1.70683293323315154287678161540, −1.25048820984180224348414809615, −1.08336537325345904003292173584, −0.881111248182183080275837920457, −0.820000338745602561813494757279, −0.63940104413889996952447650411, −0.41359203633662299368586027131,
0.41359203633662299368586027131, 0.63940104413889996952447650411, 0.820000338745602561813494757279, 0.881111248182183080275837920457, 1.08336537325345904003292173584, 1.25048820984180224348414809615, 1.70683293323315154287678161540, 1.90107182878510573559145157483, 1.90717743731700716161288814707, 1.94095112426756435184080673079, 2.38183794725398940136413427448, 2.45539372791089766333096787716, 2.46821678307035284204214865241, 2.84785314088186182278795014423, 2.89803824266721195106099238268, 3.31671748581748399603682858719, 3.42374169207616093391104773936, 3.42387014926094513277114877021, 3.59478924863030054221177332663, 3.63802659008398983633233615074, 3.65929456737270177859443667004, 3.97373644405628991896590119856, 4.09361894890067103364869562717, 4.23772515332942656249178921838, 4.32423457717477854872680787337
Plot not available for L-functions of degree greater than 10.