Properties

Label 16-1100e8-1.1-c1e8-0-6
Degree $16$
Conductor $2.144\times 10^{24}$
Sign $1$
Analytic cond. $3.54289\times 10^{7}$
Root an. cond. $2.96370$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s + 40·19-s + 12·29-s − 40·71-s + 76·79-s + 81-s − 68·109-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 160·209-s + 211-s + 223-s + ⋯
L(s)  = 1  + 1.20·11-s + 9.17·19-s + 2.22·29-s − 4.74·71-s + 8.55·79-s + 1/9·81-s − 6.51·109-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 11.0·209-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 5^{16} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(3.54289\times 10^{7}\)
Root analytic conductor: \(2.96370\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 5^{16} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(22.30758963\)
\(L(\frac12)\) \(\approx\) \(22.30758963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
good3 \( 1 - T^{4} - 95 T^{8} - p^{4} T^{12} + p^{8} T^{16} \)
7 \( 1 - 41 T^{4} - 495 T^{8} - 41 p^{4} T^{12} + p^{8} T^{16} \)
13 \( 1 + 46 T^{4} + 24051 T^{8} + 46 p^{4} T^{12} + p^{8} T^{16} \)
17 \( 1 - 601 T^{4} + 236505 T^{8} - 601 p^{4} T^{12} + p^{8} T^{16} \)
19 \( ( 1 - 5 T + p T^{2} )^{8} \)
23 \( 1 + 287 T^{4} + 484593 T^{8} + 287 p^{4} T^{12} + p^{8} T^{16} \)
29 \( ( 1 - 3 T + 13 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + 41 T^{2} + p^{2} T^{4} )^{4} \)
37 \( 1 - 1106 T^{4} + 1569075 T^{8} - 1106 p^{4} T^{12} + p^{8} T^{16} \)
41 \( ( 1 - 57 T^{2} + p^{2} T^{4} )^{4} \)
43 \( 1 - 5084 T^{4} + 12089766 T^{8} - 5084 p^{4} T^{12} + p^{8} T^{16} \)
47 \( 1 + 3086 T^{4} + 4580211 T^{8} + 3086 p^{4} T^{12} + p^{8} T^{16} \)
53 \( 1 - 881 T^{4} - 10532295 T^{8} - 881 p^{4} T^{12} + p^{8} T^{16} \)
59 \( ( 1 - 162 T^{2} + 12179 T^{4} - 162 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 173 T^{2} + 14289 T^{4} - 173 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( 1 + 2404 T^{4} - 5755290 T^{8} + 2404 p^{4} T^{12} + p^{8} T^{16} \)
71 \( ( 1 + 10 T + 146 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{4} \)
73 \( 1 + 16591 T^{4} + 122038521 T^{8} + 16591 p^{4} T^{12} + p^{8} T^{16} \)
79 \( ( 1 - 19 T + 243 T^{2} - 19 p T^{3} + p^{2} T^{4} )^{4} \)
83 \( 1 + 5471 T^{4} + 85671921 T^{8} + 5471 p^{4} T^{12} + p^{8} T^{16} \)
89 \( ( 1 - 333 T^{2} + 43433 T^{4} - 333 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( 1 + 11239 T^{4} + 183755865 T^{8} + 11239 p^{4} T^{12} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.05214308377566092779163981436, −3.99804224428995700420988395130, −3.86943465862838171803530231221, −3.86909674073718022070017956713, −3.69230020363874268990680757965, −3.41068936078449281408679539794, −3.37729257873306144054955074759, −3.32768522404168964041972445059, −3.18068389678289552262583963584, −3.02763377765856675825723540275, −2.81327652020980560283863816141, −2.77599928629211002028491996623, −2.74849544593921317877954758797, −2.70065055437919857182417953715, −2.26370423736623481153754182356, −2.09129893194757451022057910227, −1.80313847145750658955185891884, −1.72191252754984689881973519716, −1.38414490653723031343618575146, −1.34240246428388860884425685564, −1.18110071039350545922711705183, −1.04493566107983043255658496641, −0.867601483230896735814702437595, −0.68142534489945786295004895379, −0.47772751160072938499074723736, 0.47772751160072938499074723736, 0.68142534489945786295004895379, 0.867601483230896735814702437595, 1.04493566107983043255658496641, 1.18110071039350545922711705183, 1.34240246428388860884425685564, 1.38414490653723031343618575146, 1.72191252754984689881973519716, 1.80313847145750658955185891884, 2.09129893194757451022057910227, 2.26370423736623481153754182356, 2.70065055437919857182417953715, 2.74849544593921317877954758797, 2.77599928629211002028491996623, 2.81327652020980560283863816141, 3.02763377765856675825723540275, 3.18068389678289552262583963584, 3.32768522404168964041972445059, 3.37729257873306144054955074759, 3.41068936078449281408679539794, 3.69230020363874268990680757965, 3.86909674073718022070017956713, 3.86943465862838171803530231221, 3.99804224428995700420988395130, 4.05214308377566092779163981436

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.