L(s) = 1 | + 4·3-s + 8·9-s + 8·11-s + 8·13-s − 4·25-s + 20·27-s + 32·33-s − 8·37-s + 32·39-s − 8·47-s + 12·49-s + 40·59-s − 48·61-s − 8·71-s + 8·73-s − 16·75-s + 50·81-s + 24·83-s − 24·97-s + 64·99-s + 8·107-s − 32·109-s − 32·111-s + 64·117-s + 36·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 8/3·9-s + 2.41·11-s + 2.21·13-s − 4/5·25-s + 3.84·27-s + 5.57·33-s − 1.31·37-s + 5.12·39-s − 1.16·47-s + 12/7·49-s + 5.20·59-s − 6.14·61-s − 0.949·71-s + 0.936·73-s − 1.84·75-s + 50/9·81-s + 2.63·83-s − 2.43·97-s + 6.43·99-s + 0.773·107-s − 3.06·109-s − 3.03·111-s + 5.91·117-s + 3.27·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=((232⋅38⋅58⋅118)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((232⋅38⋅58⋅118)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8039105753 |
L(21) |
≈ |
0.8039105753 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1−2T+2T2−2pT3+p2T4)2 |
| 5 | (1+T2)4 |
| 11 | (1−T)8 |
good | 7 | (1−6T2+62T4−6p2T6+p4T8)2 |
| 13 | (1−4T+30T2−124T3+446T4−124pT5+30p2T6−4p3T7+p4T8)2 |
| 17 | 1−76T2+2880T4−73652T6+1419278T8−73652p2T10+2880p4T12−76p6T14+p8T16 |
| 19 | 1−64T2+2532T4−70080T6+1500646T8−70080p2T10+2532p4T12−64p6T14+p8T16 |
| 23 | (1+20T2+1078T4+20p2T6+p4T8)2 |
| 29 | 1−144T2+9252T4−370480T6+11535846T8−370480p2T10+9252p4T12−144p6T14+p8T16 |
| 31 | 1−88T2+5436T4−233448T6+8313094T8−233448p2T10+5436p4T12−88p6T14+p8T16 |
| 37 | (1+4T+16T2−308T3−1570T4−308pT5+16p2T6+4p3T7+p4T8)2 |
| 41 | 1−208T2+22596T4−1574768T6+76695494T8−1574768p2T10+22596p4T12−208p6T14+p8T16 |
| 43 | 1−92T2+7712T4−358404T6+18505454T8−358404p2T10+7712p4T12−92p6T14+p8T16 |
| 47 | (1+4T+112T2+484T3+6990T4+484pT5+112p2T6+4p3T7+p4T8)2 |
| 53 | 1−224T2+26940T4−2215968T6+134459878T8−2215968p2T10+26940p4T12−224p6T14+p8T16 |
| 59 | (1−20T+304T2−3300T3+28766T4−3300pT5+304p2T6−20p3T7+p4T8)2 |
| 61 | (1+24T+388T2+72pT3+39814T4+72p2T5+388p2T6+24p3T7+p4T8)2 |
| 67 | (1−180T2+16358T4−180p2T6+p4T8)2 |
| 71 | (1+4T+192T2+900T3+18126T4+900pT5+192p2T6+4p3T7+p4T8)2 |
| 73 | (1−4T+198T2−780T3+19726T4−780pT5+198p2T6−4p3T7+p4T8)2 |
| 79 | 1−32T2+8516T4−1034592T6+38743814T8−1034592p2T10+8516p4T12−32p6T14+p8T16 |
| 83 | (1−12T+286T2−2596T3+34654T4−2596pT5+286p2T6−12p3T7+p4T8)2 |
| 89 | 1+136T2+25692T4+2489400T6+301060486T8+2489400p2T10+25692p4T12+136p6T14+p8T16 |
| 97 | (1+12T+264T2+3252T3+32318T4+3252pT5+264p2T6+12p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.60887741591621394528575819720, −3.56727050215389541491425248435, −3.56539029586008747845441617920, −3.47060840833850225053988562604, −3.34814571815109552061906603867, −3.25338804344753079490117985267, −2.80770708155705491832091345992, −2.77777144248681119239888947662, −2.65558077663096870785313985636, −2.64423274114393724540819916823, −2.46591234873333198794157039062, −2.39946020080705821675538962627, −2.31979815089846440384069839655, −2.18252321682107126988697016184, −1.95487290699384287984091680346, −1.66409466153467289599224233821, −1.43433019460739867108112352923, −1.42238565437100527085902475495, −1.38849016622675551008670651959, −1.36762611085550147938262704886, −1.17212171926409555077606734972, −1.00687048314697973099187019604, −0.76104904999974834715801243113, −0.43867976525762619747633127712, −0.03568918302190864357438898039,
0.03568918302190864357438898039, 0.43867976525762619747633127712, 0.76104904999974834715801243113, 1.00687048314697973099187019604, 1.17212171926409555077606734972, 1.36762611085550147938262704886, 1.38849016622675551008670651959, 1.42238565437100527085902475495, 1.43433019460739867108112352923, 1.66409466153467289599224233821, 1.95487290699384287984091680346, 2.18252321682107126988697016184, 2.31979815089846440384069839655, 2.39946020080705821675538962627, 2.46591234873333198794157039062, 2.64423274114393724540819916823, 2.65558077663096870785313985636, 2.77777144248681119239888947662, 2.80770708155705491832091345992, 3.25338804344753079490117985267, 3.34814571815109552061906603867, 3.47060840833850225053988562604, 3.56539029586008747845441617920, 3.56727050215389541491425248435, 3.60887741591621394528575819720
Plot not available for L-functions of degree greater than 10.