L(s) = 1 | − 2·3-s + 3·9-s − 6·11-s + 4·17-s − 4·25-s + 4·27-s − 4·29-s + 4·31-s + 12·33-s − 12·37-s − 16·41-s + 26·49-s − 8·51-s + 12·67-s + 8·75-s − 11·81-s + 72·83-s + 8·87-s − 8·93-s − 8·97-s − 18·99-s + 52·101-s + 8·103-s + 24·111-s + 24·121-s + 32·123-s + 127-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 9-s − 1.80·11-s + 0.970·17-s − 4/5·25-s + 0.769·27-s − 0.742·29-s + 0.718·31-s + 2.08·33-s − 1.97·37-s − 2.49·41-s + 26/7·49-s − 1.12·51-s + 1.46·67-s + 0.923·75-s − 1.22·81-s + 7.90·83-s + 0.857·87-s − 0.829·93-s − 0.812·97-s − 1.80·99-s + 5.17·101-s + 0.788·103-s + 2.27·111-s + 2.18·121-s + 2.88·123-s + 0.0887·127-s + ⋯ |
Λ(s)=(=((232⋅38⋅58⋅118)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((232⋅38⋅58⋅118)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.978008993 |
L(21) |
≈ |
1.978008993 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+2T+T2−8T3−16T4−8pT5+p2T6+2p3T7+p4T8 |
| 5 | (1+T2)4 |
| 11 | 1+6T+12T2−6pT3−378T4−6p2T5+12p2T6+6p3T7+p4T8 |
good | 7 | 1−26T2+47pT4−3098T6+24180T8−3098p2T10+47p5T12−26p6T14+p8T16 |
| 13 | 1−60T2+1892T4−39972T6+607318T8−39972p2T10+1892p4T12−60p6T14+p8T16 |
| 17 | (1−2T+37T2+2T3+36pT4+2pT5+37p2T6−2p3T7+p4T8)2 |
| 19 | 1−54T2+1513T4−24406T6+389156T8−24406p2T10+1513p4T12−54p6T14+p8T16 |
| 23 | 1−80T2+2588T4−37552T6+401926T8−37552p2T10+2588p4T12−80p6T14+p8T16 |
| 29 | (1+2T+73T2+124T3+3004T4+124pT5+73p2T6+2p3T7+p4T8)2 |
| 31 | (1−2T+9T2+14T3+636T4+14pT5+9p2T6−2p3T7+p4T8)2 |
| 37 | (1+6T+77T2+8T3+1572T4+8pT5+77p2T6+6p3T7+p4T8)2 |
| 41 | (1+8T+152T2+904T3+9166T4+904pT5+152p2T6+8p3T7+p4T8)2 |
| 43 | 1−184T2+16700T4−1008840T6+47686758T8−1008840p2T10+16700p4T12−184p6T14+p8T16 |
| 47 | 1−120T2+8828T4−511176T6+26922502T8−511176p2T10+8828p4T12−120p6T14+p8T16 |
| 53 | 1−366T2+60961T4−6049838T6+392003636T8−6049838p2T10+60961p4T12−366p6T14+p8T16 |
| 59 | 1−284T2+41876T4−4064260T6+281102518T8−4064260p2T10+41876p4T12−284p6T14+p8T16 |
| 61 | 1−178T2+16233T4−1367798T6+99891260T8−1367798p2T10+16233p4T12−178p6T14+p8T16 |
| 67 | (1−6T+92T2−270T3+7174T4−270pT5+92p2T6−6p3T7+p4T8)2 |
| 71 | 1−398T2+73505T4−8497986T6+699860940T8−8497986p2T10+73505p4T12−398p6T14+p8T16 |
| 73 | 1−204T2+21444T4−1995828T6+165946934T8−1995828p2T10+21444p4T12−204p6T14+p8T16 |
| 79 | 1−4pT2+50260T4−5841924T6+529552214T8−5841924p2T10+50260p4T12−4p7T14+p8T16 |
| 83 | (1−36T+724T2−9924T3+103462T4−9924pT5+724p2T6−36p3T7+p4T8)2 |
| 89 | 1−450T2+88625T4−10694546T6+1008754980T8−10694546p2T10+88625p4T12−450p6T14+p8T16 |
| 97 | (1+4T+172T2+732T3+25958T4+732pT5+172p2T6+4p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.63774262628700070316077480001, −3.45011738477178693693207448465, −3.35309982136982853390631045208, −3.31198775104654406891394977185, −3.27571456929968347869723990489, −3.19573958135364787287280103492, −3.06645209727711529753815696749, −2.98958180338778428871583008760, −2.76113577361030613726203250699, −2.42406490268166475222079481014, −2.27773480251639995818024650769, −2.24384590154903788338620633738, −2.15785693020796979252558298968, −2.07350992954652736834564294631, −2.01479665726920595455387385774, −1.90666043504541226691131731123, −1.78459550467572788329966557681, −1.32723689228536405378999956413, −1.24244507319561031508824570752, −1.04481745562654336350814567837, −0.876213955070272641785123011344, −0.78276280535055089158301410891, −0.54339682428973169266482312306, −0.49362768118819703381522321162, −0.14215217647355781052957450520,
0.14215217647355781052957450520, 0.49362768118819703381522321162, 0.54339682428973169266482312306, 0.78276280535055089158301410891, 0.876213955070272641785123011344, 1.04481745562654336350814567837, 1.24244507319561031508824570752, 1.32723689228536405378999956413, 1.78459550467572788329966557681, 1.90666043504541226691131731123, 2.01479665726920595455387385774, 2.07350992954652736834564294631, 2.15785693020796979252558298968, 2.24384590154903788338620633738, 2.27773480251639995818024650769, 2.42406490268166475222079481014, 2.76113577361030613726203250699, 2.98958180338778428871583008760, 3.06645209727711529753815696749, 3.19573958135364787287280103492, 3.27571456929968347869723990489, 3.31198775104654406891394977185, 3.35309982136982853390631045208, 3.45011738477178693693207448465, 3.63774262628700070316077480001
Plot not available for L-functions of degree greater than 10.