L(s) = 1 | − 4·2-s + 8·4-s + 6·5-s − 2·7-s − 16·8-s − 3·9-s − 24·10-s − 18·11-s + 36·13-s + 8·14-s + 36·16-s − 42·17-s + 12·18-s + 46·19-s + 48·20-s + 72·22-s − 36·23-s + 18·25-s − 144·26-s + 24·27-s − 16·28-s − 6·29-s + 32·31-s − 64·32-s + 168·34-s − 12·35-s − 24·36-s + ⋯ |
L(s) = 1 | − 2·2-s + 2·4-s + 6/5·5-s − 2/7·7-s − 2·8-s − 1/3·9-s − 2.39·10-s − 1.63·11-s + 2.76·13-s + 4/7·14-s + 9/4·16-s − 2.47·17-s + 2/3·18-s + 2.42·19-s + 12/5·20-s + 3.27·22-s − 1.56·23-s + 0.719·25-s − 5.53·26-s + 8/9·27-s − 4/7·28-s − 0.206·29-s + 1.03·31-s − 2·32-s + 4.94·34-s − 0.342·35-s − 2/3·36-s + ⋯ |
Λ(s)=(=((28⋅138)s/2ΓC(s)8L(s)Λ(3−s)
Λ(s)=(=((28⋅138)s/2ΓC(s+1)8L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
0.2493713384 |
L(21) |
≈ |
0.2493713384 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+pT+pT2+p2T3+p2T4)2 |
| 13 | 1−36T+589T2−7824T3+8172pT4−7824p2T5+589p4T6−36p6T7+p8T8 |
good | 3 | 1+pT2−8pT3−29pT4+8p2T5−2p3T6+200p2T7+70p2T8+200p4T9−2p7T10+8p8T11−29p9T12−8p11T13+p13T14+p16T16 |
| 5 | 1−6T+18T2−48pT3+89pT4+2988T5+2862T6+36666T7−716556T8+36666p2T9+2862p4T10+2988p6T11+89p9T12−48p11T13+18p12T14−6p14T15+p16T16 |
| 7 | 1+2T−127T2−62pT3+8255T4+22156T5−385248T6−453708T7+19028482T8−453708p2T9−385248p4T10+22156p6T11+8255p8T12−62p11T13−127p12T14+2p14T15+p16T16 |
| 11 | 1+18T+105T2−3114T3−59393T4−565908T5+897792T6+64810956T7+1103342370T8+64810956p2T9+897792p4T10−565908p6T11−59393p8T12−3114p10T13+105p12T14+18p14T15+p16T16 |
| 17 | 1+42T+1726T2+47796T3+1303465T4+30227796T5+646060522T6+12441458526T7+218725843324T8+12441458526p2T9+646060522p4T10+30227796p6T11+1303465p8T12+47796p10T13+1726p12T14+42p14T15+p16T16 |
| 19 | 1−46T+977T2−19730T3+483311T4−8783612T5+6242688pT6−1680839364T7+28608116338T8−1680839364p2T9+6242688p5T10−8783612p6T11+483311p8T12−19730p10T13+977p12T14−46p14T15+p16T16 |
| 23 | 1+36T+2131T2+61164T3+2152429T4+44226000T5+1303450510T6+22452294672T7+648751140166T8+22452294672p2T9+1303450510p4T10+44226000p6T11+2152429p8T12+61164p10T13+2131p12T14+36p14T15+p16T16 |
| 29 | 1+6T−2398T2−14772T3+2997253T4+14035500T5−3325399546T6−4535559294T7+3230740374436T8−4535559294p2T9−3325399546p4T10+14035500p6T11+2997253p8T12−14772p10T13−2398p12T14+6p14T15+p16T16 |
| 31 | 1−32T+512T2−24592T3+1881968T4−48317872T5+884987520T6−50977297056T7+2940963189598T8−50977297056p2T9+884987520p4T10−48317872p6T11+1881968p8T12−24592p10T13+512p12T14−32p14T15+p16T16 |
| 37 | 1+106T+8342T2+393068T3+15188585T4+276977564T5−1726711374T6−651456022674T7−28349233687076T8−651456022674p2T9−1726711374p4T10+276977564p6T11+15188585p8T12+393068p10T13+8342p12T14+106p14T15+p16T16 |
| 41 | 1−132T+10686T2−13512pT3+19988317T4−213687144T5−26569998546T6+2518966024308T7−124070043071700T8+2518966024308p2T9−26569998546p4T10−213687144p6T11+19988317p8T12−13512p11T13+10686p12T14−132p14T15+p16T16 |
| 43 | 1+108T+253pT2+755028T3+48271669T4+2548436904T5+130030600102T6+5877290089008T7+263654368009582T8+5877290089008p2T9+130030600102p4T10+2548436904p6T11+48271669p8T12+755028p10T13+253p13T14+108p14T15+p16T16 |
| 47 | 1−60T+1800T2−154932T3+21951088T4−867532140T5+24541932312T6−2003115348324T7+163148147612766T8−2003115348324p2T9+24541932312p4T10−867532140p6T11+21951088p8T12−154932p10T13+1800p12T14−60p14T15+p16T16 |
| 53 | (1+66T+5917T2+184818T3+12226368T4+184818p2T5+5917p4T6+66p6T7+p8T8)2 |
| 59 | 1−18T+5565T2−318294T3+23254759T4−1693659348T5+98133474288T6−8885846915100T7+327983542866810T8−8885846915100p2T9+98133474288p4T10−1693659348p6T11+23254759p8T12−318294p10T13+5565p12T14−18p14T15+p16T16 |
| 61 | 1−36T−11878T2+285336T3+88972381T4−1311266160T5−475974647662T6+1883345164380T7+2030181383859340T8+1883345164380p2T9−475974647662p4T10−1311266160p6T11+88972381p8T12+285336p10T13−11878p12T14−36p14T15+p16T16 |
| 67 | 1+74T+15917T2+695782T3+97615703T4+493359916T5+227553513504T6−21342931471668T7+178591314167674T8−21342931471668p2T9+227553513504p4T10+493359916p6T11+97615703p8T12+695782p10T13+15917p12T14+74p14T15+p16T16 |
| 71 | 1+174T+14793T2+561450T3−2330369T4−584834196T5+83898109968T6+14951669162460T7+1250020614182514T8+14951669162460p2T9+83898109968p4T10−584834196p6T11−2330369p8T12+561450p10T13+14793p12T14+174p14T15+p16T16 |
| 73 | 1−166T+13778T2−1402664T3+172017437T4−14047512068T5+945563904750T6−1139077533150pT7+1353169547476p2T8−1139077533150p3T9+945563904750p4T10−14047512068p6T11+172017437p8T12−1402664p10T13+13778p12T14−166p14T15+p16T16 |
| 79 | (1+48T+10084T2+724368T3+50280774T4+724368p2T5+10084p4T6+48p6T7+p8T8)2 |
| 83 | 1+240T+28800T2+2896512T3+298194640T4+338245056pT5+2344726766592T6+177350340390480T7+13560551099314782T8+177350340390480p2T9+2344726766592p4T10+338245056p7T11+298194640p8T12+2896512p10T13+28800p12T14+240p14T15+p16T16 |
| 89 | 1−294T+63735T2−10176306T3+1386303445T4−163006886868T5+17292939386730T6−1689166620371832T7+154185854226666234T8−1689166620371832p2T9+17292939386730p4T10−163006886868p6T11+1386303445p8T12−10176306p10T13+63735p12T14−294p14T15+p16T16 |
| 97 | 1+58T+14363T2+998T3−4472611T4−1301881588T5−229071912798T6+178692170625312T7+7600464823934194T8+178692170625312p2T9−229071912798p4T10−1301881588p6T11−4472611p8T12+998p10T13+14363p12T14+58p14T15+p16T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.508536336186558123739459273033, −8.415811805627628070892323830060, −8.414200846963753870410423786743, −8.408054940427337131476877541663, −7.938031072020424465250746126613, −7.51327801071358733594405478733, −7.32621940736378706558100165065, −7.19686918574269283431349104819, −7.00799684015701738839241920865, −6.64726784752073974216223813522, −6.59310787136014597901912063305, −6.07070787594747835733965990320, −5.86126712498175236756529226101, −5.79575268262008453379640960603, −5.68351322626094566961703263013, −5.59585237339799816418015853747, −4.73732082562542502302931571853, −4.67875794261568990535766948499, −4.51599376519828505595508846068, −3.72501728027450928871648736105, −3.34406627693961089623562420582, −3.32403950724458260739668169059, −2.45694893223072642811104559116, −2.39308500621309395742667048041, −1.40446580441834285903588825862,
1.40446580441834285903588825862, 2.39308500621309395742667048041, 2.45694893223072642811104559116, 3.32403950724458260739668169059, 3.34406627693961089623562420582, 3.72501728027450928871648736105, 4.51599376519828505595508846068, 4.67875794261568990535766948499, 4.73732082562542502302931571853, 5.59585237339799816418015853747, 5.68351322626094566961703263013, 5.79575268262008453379640960603, 5.86126712498175236756529226101, 6.07070787594747835733965990320, 6.59310787136014597901912063305, 6.64726784752073974216223813522, 7.00799684015701738839241920865, 7.19686918574269283431349104819, 7.32621940736378706558100165065, 7.51327801071358733594405478733, 7.938031072020424465250746126613, 8.408054940427337131476877541663, 8.414200846963753870410423786743, 8.415811805627628070892323830060, 8.508536336186558123739459273033
Plot not available for L-functions of degree greater than 10.