L(s) = 1 | − 6·2-s + 6·3-s + 23·4-s − 4·5-s − 36·6-s − 7·7-s − 72·8-s + 13·9-s + 24·10-s − 2·11-s + 138·12-s + 6·13-s + 42·14-s − 24·15-s + 199·16-s − 8·17-s − 78·18-s − 5·19-s − 92·20-s − 42·21-s + 12·22-s − 32·23-s − 432·24-s + 26·25-s − 36·26-s − 2·27-s − 161·28-s + ⋯ |
L(s) = 1 | − 4.24·2-s + 3.46·3-s + 23/2·4-s − 1.78·5-s − 14.6·6-s − 2.64·7-s − 25.4·8-s + 13/3·9-s + 7.58·10-s − 0.603·11-s + 39.8·12-s + 1.66·13-s + 11.2·14-s − 6.19·15-s + 49.7·16-s − 1.94·17-s − 18.3·18-s − 1.14·19-s − 20.5·20-s − 9.16·21-s + 2.55·22-s − 6.67·23-s − 88.1·24-s + 26/5·25-s − 7.06·26-s − 0.384·27-s − 30.4·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.04883943605 |
L(21) |
≈ |
0.04883943605 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | (1+3T+pT2+T4+p3T6+3p3T7+p4T8)2 |
| 3 | 1−2pT+23T2−58T3+4p3T4−148T5+47pT6−94T7+43T8−94pT9+47p3T10−148p3T11+4p7T12−58p5T13+23p6T14−2p8T15+p8T16 |
| 5 | (1+T−4T2+pT3+p2T4)4 |
| 7 | 1+pT+37T2+134T3+458T4+1471T5+4694T6+14192T7+39103T8+14192pT9+4694p2T10+1471p3T11+458p4T12+134p5T13+37p6T14+p8T15+p8T16 |
| 11 | 1+2T+pT2+58T3+116T4−164T5+39pT6−4756T7−24153T8−4756pT9+39p3T10−164p3T11+116p4T12+58p5T13+p7T14+2p7T15+p8T16 |
| 13 | 1−6T+33T2−38T3−12T4+1132T5+127pT6−16194T7+133363T8−16194pT9+127p3T10+1132p3T11−12p4T12−38p5T13+33p6T14−6p7T15+p8T16 |
| 17 | 1+8T+57T2+276T3+1508T4+6624T5+35159T6+145358T7+660723T8+145358pT9+35159p2T10+6624p3T11+1508p4T12+276p5T13+57p6T14+8p7T15+p8T16 |
| 19 | 1+5T+29T2−70T3−590T4−4435T5−2714T6+42900T7+426339T8+42900pT9−2714p2T10−4435p3T11−590p4T12−70p5T13+29p6T14+5p7T15+p8T16 |
| 23 | (1+16T+113T2+570T3+2741T4+570pT5+113p2T6+16p3T7+p4T8)2 |
| 29 | (1+11T2+90T3+661T4+90pT5+11p2T6+p4T8)2 |
| 37 | (1+2T−33T2+2pT3+p2T4)4 |
| 41 | 1−7T+pT2−518T3+3626T4−15911T5+3954pT6−1177414T7+5416137T8−1177414pT9+3954p3T10−15911p3T11+3626p4T12−518p5T13+p7T14−7p7T15+p8T16 |
| 43 | 1+4T+pT2−328T3−2092T4−17288T5−42379T6+635666T7+2926363T8+635666pT9−42379p2T10−17288p3T11−2092p4T12−328p5T13+p7T14+4p7T15+p8T16 |
| 47 | (1+8T+17T2+380T3+4721T4+380pT5+17p2T6+8p3T7+p4T8)2 |
| 53 | 1+4T−27T2−588T3−4432T4−1608T5+100691T6+1155796T7+6693663T8+1155796pT9+100691p2T10−1608p3T11−4432p4T12−588p5T13−27p6T14+4p7T15+p8T16 |
| 59 | 1−5T+69T2+270T3−1990T4+37635T5−145834T6−485900T7+5823099T8−485900pT9−145834p2T10+37635p3T11−1990p4T12+270p5T13+69p6T14−5p7T15+p8T16 |
| 61 | (1−6T+6T2−6pT3+p2T4)4 |
| 67 | (1+8T−3T2+8pT3+p2T4)4 |
| 71 | 1−27T+421T2−3318T3+6786T4+165549T5−1786666T6+6219816T7−615913T8+6219816pT9−1786666p2T10+165549p3T11+6786p4T12−3318p5T13+421p6T14−27p7T15+p8T16 |
| 73 | 1−6T+33T2+1262T3−12972T4+61052T5+133831T6−7999944T7+53220103T8−7999944pT9+133831p2T10+61052p3T11−12972p4T12+1262p5T13+33p6T14−6p7T15+p8T16 |
| 79 | 1+10T+19T2−1570T3−21460T4−132020T5+181241T6+13939970T7+166725259T8+13939970pT9+181241p2T10−132020p3T11−21460p4T12−1570p5T13+19p6T14+10p7T15+p8T16 |
| 83 | 1−26T+483T2−5778T3+60548T4−592908T5+6213461T6−66709124T7+637073703T8−66709124pT9+6213461p2T10−592908p3T11+60548p4T12−5778p5T13+483p6T14−26p7T15+p8T16 |
| 89 | (1+10T+71T2+1290T3+19001T4+1290pT5+71p2T6+10p3T7+p4T8)2 |
| 97 | (1+13T+192T2+2195T3+31031T4+2195pT5+192p2T6+13p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.19181902599993387236173495526, −3.82074414892482064786618458628, −3.75667651272346123979627738810, −3.66133705192535536103874893740, −3.56023356987468585740590288174, −3.42648652328988362792831464213, −3.31937935843777864215981122886, −3.31145309853263925104729576062, −3.05879889494102784883176069138, −3.03548249419434629675523859822, −2.95220889952915175334062271893, −2.69264545887661440283173261105, −2.63269514415010715267135077926, −2.29607635489839945317745321525, −2.28199765459870036274052816691, −2.14590047692293573887586464612, −1.97254207134369230581726673355, −1.92117219814172768981099265243, −1.91424092126641772955543096281, −1.47557155684217227106171692713, −1.20011809796997359784596369741, −1.02874398411419716296613537054, −0.38270290903840431955197540654, −0.31011149207910842362027125560, −0.14252684859426603654556820341,
0.14252684859426603654556820341, 0.31011149207910842362027125560, 0.38270290903840431955197540654, 1.02874398411419716296613537054, 1.20011809796997359784596369741, 1.47557155684217227106171692713, 1.91424092126641772955543096281, 1.92117219814172768981099265243, 1.97254207134369230581726673355, 2.14590047692293573887586464612, 2.28199765459870036274052816691, 2.29607635489839945317745321525, 2.63269514415010715267135077926, 2.69264545887661440283173261105, 2.95220889952915175334062271893, 3.03548249419434629675523859822, 3.05879889494102784883176069138, 3.31145309853263925104729576062, 3.31937935843777864215981122886, 3.42648652328988362792831464213, 3.56023356987468585740590288174, 3.66133705192535536103874893740, 3.75667651272346123979627738810, 3.82074414892482064786618458628, 4.19181902599993387236173495526
Plot not available for L-functions of degree greater than 10.