Properties

Label 16-31e16-1.1-c1e8-0-2
Degree $16$
Conductor $7.274\times 10^{23}$
Sign $1$
Analytic cond. $1.20227\times 10^{7}$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 6·3-s + 23·4-s − 4·5-s − 36·6-s − 7·7-s − 72·8-s + 13·9-s + 24·10-s − 2·11-s + 138·12-s + 6·13-s + 42·14-s − 24·15-s + 199·16-s − 8·17-s − 78·18-s − 5·19-s − 92·20-s − 42·21-s + 12·22-s − 32·23-s − 432·24-s + 26·25-s − 36·26-s − 2·27-s − 161·28-s + ⋯
L(s)  = 1  − 4.24·2-s + 3.46·3-s + 23/2·4-s − 1.78·5-s − 14.6·6-s − 2.64·7-s − 25.4·8-s + 13/3·9-s + 7.58·10-s − 0.603·11-s + 39.8·12-s + 1.66·13-s + 11.2·14-s − 6.19·15-s + 49.7·16-s − 1.94·17-s − 18.3·18-s − 1.14·19-s − 20.5·20-s − 9.16·21-s + 2.55·22-s − 6.67·23-s − 88.1·24-s + 26/5·25-s − 7.06·26-s − 0.384·27-s − 30.4·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(31^{16}\)
Sign: $1$
Analytic conductor: \(1.20227\times 10^{7}\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 31^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.04883943605\)
\(L(\frac12)\) \(\approx\) \(0.04883943605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( ( 1 + 3 T + p T^{2} + T^{4} + p^{3} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
3 \( 1 - 2 p T + 23 T^{2} - 58 T^{3} + 4 p^{3} T^{4} - 148 T^{5} + 47 p T^{6} - 94 T^{7} + 43 T^{8} - 94 p T^{9} + 47 p^{3} T^{10} - 148 p^{3} T^{11} + 4 p^{7} T^{12} - 58 p^{5} T^{13} + 23 p^{6} T^{14} - 2 p^{8} T^{15} + p^{8} T^{16} \)
5 \( ( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} )^{4} \)
7 \( 1 + p T + 37 T^{2} + 134 T^{3} + 458 T^{4} + 1471 T^{5} + 4694 T^{6} + 14192 T^{7} + 39103 T^{8} + 14192 p T^{9} + 4694 p^{2} T^{10} + 1471 p^{3} T^{11} + 458 p^{4} T^{12} + 134 p^{5} T^{13} + 37 p^{6} T^{14} + p^{8} T^{15} + p^{8} T^{16} \)
11 \( 1 + 2 T + p T^{2} + 58 T^{3} + 116 T^{4} - 164 T^{5} + 39 p T^{6} - 4756 T^{7} - 24153 T^{8} - 4756 p T^{9} + 39 p^{3} T^{10} - 164 p^{3} T^{11} + 116 p^{4} T^{12} + 58 p^{5} T^{13} + p^{7} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 - 6 T + 33 T^{2} - 38 T^{3} - 12 T^{4} + 1132 T^{5} + 127 p T^{6} - 16194 T^{7} + 133363 T^{8} - 16194 p T^{9} + 127 p^{3} T^{10} + 1132 p^{3} T^{11} - 12 p^{4} T^{12} - 38 p^{5} T^{13} + 33 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 + 8 T + 57 T^{2} + 276 T^{3} + 1508 T^{4} + 6624 T^{5} + 35159 T^{6} + 145358 T^{7} + 660723 T^{8} + 145358 p T^{9} + 35159 p^{2} T^{10} + 6624 p^{3} T^{11} + 1508 p^{4} T^{12} + 276 p^{5} T^{13} + 57 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 + 5 T + 29 T^{2} - 70 T^{3} - 590 T^{4} - 4435 T^{5} - 2714 T^{6} + 42900 T^{7} + 426339 T^{8} + 42900 p T^{9} - 2714 p^{2} T^{10} - 4435 p^{3} T^{11} - 590 p^{4} T^{12} - 70 p^{5} T^{13} + 29 p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
23 \( ( 1 + 16 T + 113 T^{2} + 570 T^{3} + 2741 T^{4} + 570 p T^{5} + 113 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 11 T^{2} + 90 T^{3} + 661 T^{4} + 90 p T^{5} + 11 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{4} \)
41 \( 1 - 7 T + p T^{2} - 518 T^{3} + 3626 T^{4} - 15911 T^{5} + 3954 p T^{6} - 1177414 T^{7} + 5416137 T^{8} - 1177414 p T^{9} + 3954 p^{3} T^{10} - 15911 p^{3} T^{11} + 3626 p^{4} T^{12} - 518 p^{5} T^{13} + p^{7} T^{14} - 7 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 + 4 T + p T^{2} - 328 T^{3} - 2092 T^{4} - 17288 T^{5} - 42379 T^{6} + 635666 T^{7} + 2926363 T^{8} + 635666 p T^{9} - 42379 p^{2} T^{10} - 17288 p^{3} T^{11} - 2092 p^{4} T^{12} - 328 p^{5} T^{13} + p^{7} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
47 \( ( 1 + 8 T + 17 T^{2} + 380 T^{3} + 4721 T^{4} + 380 p T^{5} + 17 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
53 \( 1 + 4 T - 27 T^{2} - 588 T^{3} - 4432 T^{4} - 1608 T^{5} + 100691 T^{6} + 1155796 T^{7} + 6693663 T^{8} + 1155796 p T^{9} + 100691 p^{2} T^{10} - 1608 p^{3} T^{11} - 4432 p^{4} T^{12} - 588 p^{5} T^{13} - 27 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 - 5 T + 69 T^{2} + 270 T^{3} - 1990 T^{4} + 37635 T^{5} - 145834 T^{6} - 485900 T^{7} + 5823099 T^{8} - 485900 p T^{9} - 145834 p^{2} T^{10} + 37635 p^{3} T^{11} - 1990 p^{4} T^{12} + 270 p^{5} T^{13} + 69 p^{6} T^{14} - 5 p^{7} T^{15} + p^{8} T^{16} \)
61 \( ( 1 - 6 T + 6 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
71 \( 1 - 27 T + 421 T^{2} - 3318 T^{3} + 6786 T^{4} + 165549 T^{5} - 1786666 T^{6} + 6219816 T^{7} - 615913 T^{8} + 6219816 p T^{9} - 1786666 p^{2} T^{10} + 165549 p^{3} T^{11} + 6786 p^{4} T^{12} - 3318 p^{5} T^{13} + 421 p^{6} T^{14} - 27 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 6 T + 33 T^{2} + 1262 T^{3} - 12972 T^{4} + 61052 T^{5} + 133831 T^{6} - 7999944 T^{7} + 53220103 T^{8} - 7999944 p T^{9} + 133831 p^{2} T^{10} + 61052 p^{3} T^{11} - 12972 p^{4} T^{12} + 1262 p^{5} T^{13} + 33 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 10 T + 19 T^{2} - 1570 T^{3} - 21460 T^{4} - 132020 T^{5} + 181241 T^{6} + 13939970 T^{7} + 166725259 T^{8} + 13939970 p T^{9} + 181241 p^{2} T^{10} - 132020 p^{3} T^{11} - 21460 p^{4} T^{12} - 1570 p^{5} T^{13} + 19 p^{6} T^{14} + 10 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 - 26 T + 483 T^{2} - 5778 T^{3} + 60548 T^{4} - 592908 T^{5} + 6213461 T^{6} - 66709124 T^{7} + 637073703 T^{8} - 66709124 p T^{9} + 6213461 p^{2} T^{10} - 592908 p^{3} T^{11} + 60548 p^{4} T^{12} - 5778 p^{5} T^{13} + 483 p^{6} T^{14} - 26 p^{7} T^{15} + p^{8} T^{16} \)
89 \( ( 1 + 10 T + 71 T^{2} + 1290 T^{3} + 19001 T^{4} + 1290 p T^{5} + 71 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( ( 1 + 13 T + 192 T^{2} + 2195 T^{3} + 31031 T^{4} + 2195 p T^{5} + 192 p^{2} T^{6} + 13 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.19181902599993387236173495526, −3.82074414892482064786618458628, −3.75667651272346123979627738810, −3.66133705192535536103874893740, −3.56023356987468585740590288174, −3.42648652328988362792831464213, −3.31937935843777864215981122886, −3.31145309853263925104729576062, −3.05879889494102784883176069138, −3.03548249419434629675523859822, −2.95220889952915175334062271893, −2.69264545887661440283173261105, −2.63269514415010715267135077926, −2.29607635489839945317745321525, −2.28199765459870036274052816691, −2.14590047692293573887586464612, −1.97254207134369230581726673355, −1.92117219814172768981099265243, −1.91424092126641772955543096281, −1.47557155684217227106171692713, −1.20011809796997359784596369741, −1.02874398411419716296613537054, −0.38270290903840431955197540654, −0.31011149207910842362027125560, −0.14252684859426603654556820341, 0.14252684859426603654556820341, 0.31011149207910842362027125560, 0.38270290903840431955197540654, 1.02874398411419716296613537054, 1.20011809796997359784596369741, 1.47557155684217227106171692713, 1.91424092126641772955543096281, 1.92117219814172768981099265243, 1.97254207134369230581726673355, 2.14590047692293573887586464612, 2.28199765459870036274052816691, 2.29607635489839945317745321525, 2.63269514415010715267135077926, 2.69264545887661440283173261105, 2.95220889952915175334062271893, 3.03548249419434629675523859822, 3.05879889494102784883176069138, 3.31145309853263925104729576062, 3.31937935843777864215981122886, 3.42648652328988362792831464213, 3.56023356987468585740590288174, 3.66133705192535536103874893740, 3.75667651272346123979627738810, 3.82074414892482064786618458628, 4.19181902599993387236173495526

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.