L(s) = 1 | − 6·3-s + 4·5-s − 2·7-s + 14·9-s − 6·11-s + 24·13-s − 24·15-s + 12·17-s + 6·19-s + 12·21-s − 6·23-s + 8·25-s − 12·27-s − 12·31-s + 36·33-s − 8·35-s − 144·39-s − 4·41-s − 22·43-s + 56·45-s + 8·47-s + 2·49-s − 72·51-s − 48·53-s − 24·55-s − 36·57-s + 22·59-s + ⋯ |
L(s) = 1 | − 3.46·3-s + 1.78·5-s − 0.755·7-s + 14/3·9-s − 1.80·11-s + 6.65·13-s − 6.19·15-s + 2.91·17-s + 1.37·19-s + 2.61·21-s − 1.25·23-s + 8/5·25-s − 2.30·27-s − 2.15·31-s + 6.26·33-s − 1.35·35-s − 23.0·39-s − 0.624·41-s − 3.35·43-s + 8.34·45-s + 1.16·47-s + 2/7·49-s − 10.0·51-s − 6.59·53-s − 3.23·55-s − 4.76·57-s + 2.86·59-s + ⋯ |
Λ(s)=(=((240⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((240⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.280031737 |
L(21) |
≈ |
1.280031737 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | (1−6T+pT2)4 |
good | 3 | 1+2pT+22T2+20pT3+43pT4+28p2T5+466T6+94p2T7+1516T8+94p3T9+466p2T10+28p5T11+43p5T12+20p6T13+22p6T14+2p8T15+p8T16 |
| 5 | 1−4T+8T2−12T3−4T4+76T5−8p2T6+84pT7−794T8+84p2T9−8p4T10+76p3T11−4p4T12−12p5T13+8p6T14−4p7T15+p8T16 |
| 7 | 1+2T+2T2+4pT3+101T4+4p2T5+582T6+2202T7+5716T8+2202pT9+582p2T10+4p5T11+101p4T12+4p6T13+2p6T14+2p7T15+p8T16 |
| 11 | 1+6T+30T2+84T3+145T4−348T5−3030T6−17202T7−56916T8−17202pT9−3030p2T10−348p3T11+145p4T12+84p5T13+30p6T14+6p7T15+p8T16 |
| 17 | 1−12T+114T2−792T3+4693T4−23520T5+110490T6−471996T7+1997436T8−471996pT9+110490p2T10−23520p3T11+4693p4T12−792p5T13+114p6T14−12p7T15+p8T16 |
| 19 | 1−6T+30T2−252T3+1489T4−7620T5+40746T6−188694T7+823116T8−188694pT9+40746p2T10−7620p3T11+1489p4T12−252p5T13+30p6T14−6p7T15+p8T16 |
| 23 | 1+6T−2T2−156T3−1151T4−5604T5−4262T6+135054T7+1066684T8+135054pT9−4262p2T10−5604p3T11−1151p4T12−156p5T13−2p6T14+6p7T15+p8T16 |
| 29 | 1−38T2+144T3−59T4−4824T5+11986T6+50472T7+186988T8+50472pT9+11986p2T10−4824p3T11−59p4T12+144p5T13−38p6T14+p8T16 |
| 31 | 1+12T+72T2+540T3+5500T4+36684T5+190008T6+1281084T7+8521734T8+1281084pT9+190008p2T10+36684p3T11+5500p4T12+540p5T13+72p6T14+12p7T15+p8T16 |
| 37 | 1+90T2−96T3+2929T4−12480T5+25218T6−933600T7−881004T8−933600pT9+25218p2T10−12480p3T11+2929p4T12−96p5T13+90p6T14+p8T16 |
| 41 | 1+4T−10T2−240T3−1339T4−2584T5+24694T6+292068T7−192452T8+292068pT9+24694p2T10−2584p3T11−1339p4T12−240p5T13−10p6T14+4p7T15+p8T16 |
| 43 | 1+22T+150T2+788T3+14033T4+120588T5+419410T6+4311526T7+47947500T8+4311526pT9+419410p2T10+120588p3T11+14033p4T12+788p5T13+150p6T14+22p7T15+p8T16 |
| 47 | (1−4T+8T2−100T3+766T4−100pT5+8p2T6−4p3T7+p4T8)2 |
| 53 | (1+24T+368T2+72pT3+31806T4+72p2T5+368p2T6+24p3T7+p4T8)2 |
| 59 | 1−22T+410T2−4596T3+46661T4−322124T5+2140414T6−9312390T7+69548260T8−9312390pT9+2140414p2T10−322124p3T11+46661p4T12−4596p5T13+410p6T14−22p7T15+p8T16 |
| 61 | 1−4T−138T2+472T3+8177T4−10056T5−748634T6−248860T7+65687988T8−248860pT9−748634p2T10−10056p3T11+8177p4T12+472p5T13−138p6T14−4p7T15+p8T16 |
| 67 | 1−2T−22T2+596T3−955T4−1540T5+155118T6−1149330T7+1782532T8−1149330pT9+155118p2T10−1540p3T11−955p4T12+596p5T13−22p6T14−2p7T15+p8T16 |
| 71 | 1+14T+242T2+1956T3+15989T4−3428T5−834218T6−18859242T7−160743884T8−18859242pT9−834218p2T10−3428p3T11+15989p4T12+1956p5T13+242p6T14+14p7T15+p8T16 |
| 73 | 1+12T+72T2−396T3−7076T4−25668T5+279864T6+1767300T7+23147910T8+1767300pT9+279864p2T10−25668p3T11−7076p4T12−396p5T13+72p6T14+12p7T15+p8T16 |
| 79 | 1−224T2+30940T4−3015968T6+249183430T8−3015968p2T10+30940p4T12−224p6T14+p8T16 |
| 83 | 1−44T+968T2−15660T3+206492T4−2233516T5+21008248T6−186069324T7+1657961446T8−186069324pT9+21008248p2T10−2233516p3T11+206492p4T12−15660p5T13+968p6T14−44p7T15+p8T16 |
| 89 | 1+32T+458T2+1848T3−39487T4−715376T5−3565454T6+33394392T7+654295780T8+33394392pT9−3565454p2T10−715376p3T11−39487p4T12+1848p5T13+458p6T14+32p7T15+p8T16 |
| 97 | 1−68T+1862T2−22264T3−16651T4+3698264T5−33762042T6−152904156T7+4581782908T8−152904156pT9−33762042p2T10+3698264p3T11−16651p4T12−22264p5T13+1862p6T14−68p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.19070343920528765683141300868, −4.95985794968096808861676130563, −4.84626610922084159777285236790, −4.78108041171022257978986034173, −4.59100384857136812410330363218, −4.25455343496039020146304197730, −4.02205998338317954254524574932, −3.94089780944467549905547808420, −3.58005204612683143344344336354, −3.57258443076229461536976002561, −3.38910595712710684130421419801, −3.33025575084907479273667016818, −3.28973872724973852447483416302, −3.14632230242505281418508542330, −3.12220261457826960377958997611, −2.65912322804041651295669807508, −2.13800153624399432219774384029, −1.97036190305330429753729176399, −1.95329255781088577836564254144, −1.71773422448241610247812015253, −1.32966464616894399132730820979, −1.26890940056556601935506965929, −1.07862855370893804093966555214, −0.66876770173187298434773279440, −0.39861124710530090784570850206,
0.39861124710530090784570850206, 0.66876770173187298434773279440, 1.07862855370893804093966555214, 1.26890940056556601935506965929, 1.32966464616894399132730820979, 1.71773422448241610247812015253, 1.95329255781088577836564254144, 1.97036190305330429753729176399, 2.13800153624399432219774384029, 2.65912322804041651295669807508, 3.12220261457826960377958997611, 3.14632230242505281418508542330, 3.28973872724973852447483416302, 3.33025575084907479273667016818, 3.38910595712710684130421419801, 3.57258443076229461536976002561, 3.58005204612683143344344336354, 3.94089780944467549905547808420, 4.02205998338317954254524574932, 4.25455343496039020146304197730, 4.59100384857136812410330363218, 4.78108041171022257978986034173, 4.84626610922084159777285236790, 4.95985794968096808861676130563, 5.19070343920528765683141300868
Plot not available for L-functions of degree greater than 10.