L(s) = 1 | − 4·13-s + 16-s + 4·37-s − 4·61-s − 4·73-s + 4·97-s − 8·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s − 4·208-s + 211-s + 223-s + ⋯ |
L(s) = 1 | − 4·13-s + 16-s + 4·37-s − 4·61-s − 4·73-s + 4·97-s − 8·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s − 4·208-s + 211-s + 223-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2217468204\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2217468204\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{4} + T^{8} \) |
| 3 | \( 1 \) |
| 13 | \( ( 1 + T + T^{2} )^{4} \) |
good | 5 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 7 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 11 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 17 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 19 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 23 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 29 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 31 | \( ( 1 + T^{4} )^{4} \) |
| 37 | \( ( 1 - T + T^{2} )^{4}( 1 + T^{2} )^{4} \) |
| 41 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 43 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 47 | \( ( 1 + T^{4} )^{4} \) |
| 53 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 59 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 61 | \( ( 1 + T )^{8}( 1 - T + T^{2} )^{4} \) |
| 67 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 71 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 73 | \( ( 1 + T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 79 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 83 | \( ( 1 + T^{4} )^{4} \) |
| 89 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 97 | \( ( 1 - T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.03443068434407484399511134375, −4.97859846744122077983945342904, −4.93257593728763114415825579104, −4.77175819767595790785267465039, −4.62118637118897144266460594796, −4.34398802938013565083767026141, −4.28373941085487304598572801077, −4.28271590250825820772733275414, −4.06093059798509731247237750447, −3.95194803535709756617643671174, −3.66425450613093046692507366001, −3.50475593461122742915986499654, −3.38716822873934351229709467686, −2.98191306128880075412118192744, −2.86678889395622369762212537693, −2.80090024452565737098268707264, −2.79188106071294506308134056415, −2.56153115005259617070933379260, −2.53651263033368204614480316945, −2.14086036182289266783839130184, −2.04035531291014471096641922776, −1.60796657142899555613497392353, −1.45796747499801637898033505971, −1.39392086218897431406771882935, −0.841174426196479551750983974367,
0.841174426196479551750983974367, 1.39392086218897431406771882935, 1.45796747499801637898033505971, 1.60796657142899555613497392353, 2.04035531291014471096641922776, 2.14086036182289266783839130184, 2.53651263033368204614480316945, 2.56153115005259617070933379260, 2.79188106071294506308134056415, 2.80090024452565737098268707264, 2.86678889395622369762212537693, 2.98191306128880075412118192744, 3.38716822873934351229709467686, 3.50475593461122742915986499654, 3.66425450613093046692507366001, 3.95194803535709756617643671174, 4.06093059798509731247237750447, 4.28271590250825820772733275414, 4.28373941085487304598572801077, 4.34398802938013565083767026141, 4.62118637118897144266460594796, 4.77175819767595790785267465039, 4.93257593728763114415825579104, 4.97859846744122077983945342904, 5.03443068434407484399511134375
Plot not available for L-functions of degree greater than 10.