L(s) = 1 | + 4-s − 9-s + 11-s + 16-s − 2·23-s − 25-s − 36-s − 3·37-s + 44-s + 3·53-s − 2·67-s − 6·71-s + 5·79-s + 81-s − 2·92-s − 99-s − 100-s + 5·107-s − 4·113-s + 121-s + 127-s + 131-s + 137-s + 139-s − 144-s − 3·148-s + 149-s + ⋯ |
L(s) = 1 | + 4-s − 9-s + 11-s + 16-s − 2·23-s − 25-s − 36-s − 3·37-s + 44-s + 3·53-s − 2·67-s − 6·71-s + 5·79-s + 81-s − 2·92-s − 99-s − 100-s + 5·107-s − 4·113-s + 121-s + 127-s + 131-s + 137-s + 139-s − 144-s − 3·148-s + 149-s + ⋯ |
Λ(s)=(=((716⋅118)s/2ΓC(s)8L(s)Λ(1−s)
Λ(s)=(=((716⋅118)s/2ΓC(s)8L(s)Λ(1−s)
Particular Values
L(21) |
≈ |
0.3904176653 |
L(21) |
≈ |
0.3904176653 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1−T+T3−T4+T5−T7+T8 |
good | 2 | (1−T+T3−T4+T5−T7+T8)(1+T−T3−T4−T5+T7+T8) |
| 3 | 1+T2−T6−T8−T10+T14+T16 |
| 5 | 1+T2−T6−T8−T10+T14+T16 |
| 13 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 17 | (1−T+T3−T4+T5−T7+T8)(1+T−T3−T4−T5+T7+T8) |
| 19 | (1−T+T3−T4+T5−T7+T8)(1+T−T3−T4−T5+T7+T8) |
| 23 | (1+T−T3−T4−T5+T7+T8)2 |
| 29 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 31 | 1+T2−T6−T8−T10+T14+T16 |
| 37 | (1+T+T2)4(1−T+T3−T4+T5−T7+T8) |
| 41 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 43 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 47 | 1+T2−T6−T8−T10+T14+T16 |
| 53 | (1−T+T2)4(1+T−T3−T4−T5+T7+T8) |
| 59 | 1+T2−T6−T8−T10+T14+T16 |
| 61 | (1−T+T3−T4+T5−T7+T8)(1+T−T3−T4−T5+T7+T8) |
| 67 | (1+T−T3−T4−T5+T7+T8)2 |
| 71 | (1+T)8(1−T+T2−T3+T4)2 |
| 73 | (1−T+T3−T4+T5−T7+T8)(1+T−T3−T4−T5+T7+T8) |
| 79 | (1−T+T2)4(1−T+T3−T4+T5−T7+T8) |
| 83 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 89 | (1−T2+T4)4 |
| 97 | (1−T2+T4−T6+T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.98595941483546555414676837602, −4.81247006241702557322958480108, −4.77470590017601454740527618068, −4.68010732806753859639343612687, −4.66114330044270838155498441810, −4.24364941433408646529921838562, −3.98261436155965862808452348239, −3.81843166174025678983195177554, −3.80569367519457982868022962636, −3.75631622455988315815482689394, −3.69888058083738671154768555179, −3.54274479903504429370919957088, −3.39904340069876059459802204054, −2.97448692667774850698703238355, −2.82401808763291648007453776322, −2.75273007634118709112347132324, −2.71942748545024265487422432003, −2.52301066537474133895342193263, −2.11354608418545423259098655529, −2.07756325611349713499780136593, −1.83490627517020706768663209876, −1.64905195630532839796335766350, −1.61847846942603438357443335395, −1.26451736274110363133510564526, −0.904180718382114109564293680756,
0.904180718382114109564293680756, 1.26451736274110363133510564526, 1.61847846942603438357443335395, 1.64905195630532839796335766350, 1.83490627517020706768663209876, 2.07756325611349713499780136593, 2.11354608418545423259098655529, 2.52301066537474133895342193263, 2.71942748545024265487422432003, 2.75273007634118709112347132324, 2.82401808763291648007453776322, 2.97448692667774850698703238355, 3.39904340069876059459802204054, 3.54274479903504429370919957088, 3.69888058083738671154768555179, 3.75631622455988315815482689394, 3.80569367519457982868022962636, 3.81843166174025678983195177554, 3.98261436155965862808452348239, 4.24364941433408646529921838562, 4.66114330044270838155498441810, 4.68010732806753859639343612687, 4.77470590017601454740527618068, 4.81247006241702557322958480108, 4.98595941483546555414676837602
Plot not available for L-functions of degree greater than 10.