L(s) = 1 | + 4-s − 9-s + 11-s + 16-s − 2·23-s − 25-s − 36-s − 3·37-s + 44-s + 3·53-s − 2·67-s − 6·71-s + 5·79-s + 81-s − 2·92-s − 99-s − 100-s + 5·107-s − 4·113-s + 121-s + 127-s + 131-s + 137-s + 139-s − 144-s − 3·148-s + 149-s + ⋯ |
L(s) = 1 | + 4-s − 9-s + 11-s + 16-s − 2·23-s − 25-s − 36-s − 3·37-s + 44-s + 3·53-s − 2·67-s − 6·71-s + 5·79-s + 81-s − 2·92-s − 99-s − 100-s + 5·107-s − 4·113-s + 121-s + 127-s + 131-s + 137-s + 139-s − 144-s − 3·148-s + 149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3904176653\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3904176653\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \) |
good | 2 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 3 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 5 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 17 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 19 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 23 | \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 31 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 37 | \( ( 1 + T + T^{2} )^{4}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 41 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 43 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 47 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 53 | \( ( 1 - T + T^{2} )^{4}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 59 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 61 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 67 | \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \) |
| 71 | \( ( 1 + T )^{8}( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \) |
| 73 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 79 | \( ( 1 - T + T^{2} )^{4}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 83 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 89 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 97 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.98595941483546555414676837602, −4.81247006241702557322958480108, −4.77470590017601454740527618068, −4.68010732806753859639343612687, −4.66114330044270838155498441810, −4.24364941433408646529921838562, −3.98261436155965862808452348239, −3.81843166174025678983195177554, −3.80569367519457982868022962636, −3.75631622455988315815482689394, −3.69888058083738671154768555179, −3.54274479903504429370919957088, −3.39904340069876059459802204054, −2.97448692667774850698703238355, −2.82401808763291648007453776322, −2.75273007634118709112347132324, −2.71942748545024265487422432003, −2.52301066537474133895342193263, −2.11354608418545423259098655529, −2.07756325611349713499780136593, −1.83490627517020706768663209876, −1.64905195630532839796335766350, −1.61847846942603438357443335395, −1.26451736274110363133510564526, −0.904180718382114109564293680756,
0.904180718382114109564293680756, 1.26451736274110363133510564526, 1.61847846942603438357443335395, 1.64905195630532839796335766350, 1.83490627517020706768663209876, 2.07756325611349713499780136593, 2.11354608418545423259098655529, 2.52301066537474133895342193263, 2.71942748545024265487422432003, 2.75273007634118709112347132324, 2.82401808763291648007453776322, 2.97448692667774850698703238355, 3.39904340069876059459802204054, 3.54274479903504429370919957088, 3.69888058083738671154768555179, 3.75631622455988315815482689394, 3.80569367519457982868022962636, 3.81843166174025678983195177554, 3.98261436155965862808452348239, 4.24364941433408646529921838562, 4.66114330044270838155498441810, 4.68010732806753859639343612687, 4.77470590017601454740527618068, 4.81247006241702557322958480108, 4.98595941483546555414676837602
Plot not available for L-functions of degree greater than 10.