L(s) = 1 | − 3-s − 4-s + 9-s + 12-s + 2·13-s + 16-s − 2·25-s − 5·31-s − 36-s + 37-s − 2·39-s − 43-s − 48-s − 2·49-s − 2·52-s + 3·61-s + 3·67-s + 73-s + 2·75-s − 79-s + 5·93-s − 7·97-s + 2·100-s + 3·103-s + 3·109-s − 111-s + 2·117-s + ⋯ |
L(s) = 1 | − 3-s − 4-s + 9-s + 12-s + 2·13-s + 16-s − 2·25-s − 5·31-s − 36-s + 37-s − 2·39-s − 43-s − 48-s − 2·49-s − 2·52-s + 3·61-s + 3·67-s + 73-s + 2·75-s − 79-s + 5·93-s − 7·97-s + 2·100-s + 3·103-s + 3·109-s − 111-s + 2·117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 181^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 181^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2005911446\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2005911446\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \) |
| 181 | \( ( 1 + T )^{8} \) |
good | 2 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 5 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 7 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 11 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 13 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 17 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 19 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 23 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 31 | \( ( 1 + T + T^{2} )^{4}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 37 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 41 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 43 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 47 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 53 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 59 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 67 | \( ( 1 - T + T^{2} )^{4}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 71 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} ) \) |
| 79 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 83 | \( 1 + T^{2} - T^{6} - T^{8} - T^{10} + T^{14} + T^{16} \) |
| 89 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 97 | \( ( 1 + T )^{8}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.05272366736118125494326206318, −4.88820387887531236561316388451, −4.76303594197575734933222071649, −4.64252265453481787733967606947, −4.39515282638115014656939077412, −4.23085825215494025011156341949, −4.18335368090535236945202858010, −4.00325670441245034974496699796, −3.93419256021990464741021265098, −3.61386178766256861467796823591, −3.59428431570073668161283522326, −3.53348907519064477534616874399, −3.45310221073286549396373781385, −3.38079184802935173772239902740, −3.00299973983605830480691325659, −2.78947007505498682778899569761, −2.67144502357362715685266851698, −2.21475974145462649748298355021, −2.14520056788820984482226556232, −1.92974809112542425622026434095, −1.87476621066490081003231714701, −1.69617294126856171640087948503, −1.35379066618973815338742509560, −1.01546015516420269048133602187, −0.888284891252456278448324172000,
0.888284891252456278448324172000, 1.01546015516420269048133602187, 1.35379066618973815338742509560, 1.69617294126856171640087948503, 1.87476621066490081003231714701, 1.92974809112542425622026434095, 2.14520056788820984482226556232, 2.21475974145462649748298355021, 2.67144502357362715685266851698, 2.78947007505498682778899569761, 3.00299973983605830480691325659, 3.38079184802935173772239902740, 3.45310221073286549396373781385, 3.53348907519064477534616874399, 3.59428431570073668161283522326, 3.61386178766256861467796823591, 3.93419256021990464741021265098, 4.00325670441245034974496699796, 4.18335368090535236945202858010, 4.23085825215494025011156341949, 4.39515282638115014656939077412, 4.64252265453481787733967606947, 4.76303594197575734933222071649, 4.88820387887531236561316388451, 5.05272366736118125494326206318
Plot not available for L-functions of degree greater than 10.