L(s) = 1 | − 5·2-s − 5·3-s + 10·4-s + 25·6-s − 5·8-s + 10·9-s − 4·11-s − 50·12-s − 5·13-s − 16·16-s − 10·17-s − 50·18-s − 5·19-s + 20·22-s + 5·23-s + 25·24-s − 5·25-s + 25·26-s − 5·27-s − 5·29-s − 9·31-s + 30·32-s + 20·33-s + 50·34-s + 100·36-s + 30·37-s + 25·38-s + ⋯ |
L(s) = 1 | − 3.53·2-s − 2.88·3-s + 5·4-s + 10.2·6-s − 1.76·8-s + 10/3·9-s − 1.20·11-s − 14.4·12-s − 1.38·13-s − 4·16-s − 2.42·17-s − 11.7·18-s − 1.14·19-s + 4.26·22-s + 1.04·23-s + 5.10·24-s − 25-s + 4.90·26-s − 0.962·27-s − 0.928·29-s − 1.61·31-s + 5.30·32-s + 3.48·33-s + 8.57·34-s + 50/3·36-s + 4.93·37-s + 4.05·38-s + ⋯ |
Λ(s)=(=((516)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((516)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.003735116372 |
L(21) |
≈ |
0.003735116372 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+pT2−4pT3+pT4−4p2T5+p3T6+p4T8 |
good | 2 | 1+5T+15T2+15pT3+41T4+15pT5−5p2T6−55pT7−199T8−55p2T9−5p4T10+15p4T11+41p4T12+15p6T13+15p6T14+5p7T15+p8T16 |
| 3 | 1+5T+5pT2+10pT3+4p2T4+5T5−40pT6−400T7−809T8−400pT9−40p3T10+5p3T11+4p6T12+10p6T13+5p7T14+5p7T15+p8T16 |
| 7 | 1−5pT2+611T4−7045T6+57976T8−7045p2T10+611p4T12−5p7T14+p8T16 |
| 11 | (1+2T−7T2−36T3+5T4−36pT5−7p2T6+2p3T7+p4T8)2 |
| 13 | 1+5T+30T2+60T3+346T4+655T5+6335T6+13320T7+88856T8+13320pT9+6335p2T10+655p3T11+346p4T12+60p5T13+30p6T14+5p7T15+p8T16 |
| 17 | 1+10T+90T2+720T3+4451T4+26310T5+136780T6+638720T7+2802941T8+638720pT9+136780p2T10+26310p3T11+4451p4T12+720p5T13+90p6T14+10p7T15+p8T16 |
| 19 | 1+5T−8T2+40T3+878T4+1705T5−1861T6+31550T7+293380T8+31550pT9−1861p2T10+1705p3T11+878p4T12+40p5T13−8p6T14+5p7T15+p8T16 |
| 23 | 1−5T+45T2+100T3−104T4+7645T5+18890T6+8420T7+1238691T8+8420pT9+18890p2T10+7645p3T11−104p4T12+100p5T13+45p6T14−5p7T15+p8T16 |
| 29 | 1+5T−28T2+140T3+1268T4−5045T5+48219T6+207000T7−1738520T8+207000pT9+48219p2T10−5045p3T11+1268p4T12+140p5T13−28p6T14+5p7T15+p8T16 |
| 31 | 1+9T+55T2+390T3+2980T4+20297T5+114748T6+589990T7+3582095T8+589990pT9+114748p2T10+20297p3T11+2980p4T12+390p5T13+55p6T14+9p7T15+p8T16 |
| 37 | 1−30T+480T2−5675T3+56171T4−489630T5+3826535T6−26904445T7+171416106T8−26904445pT9+3826535p2T10−489630p3T11+56171p4T12−5675p5T13+480p6T14−30p7T15+p8T16 |
| 41 | 1+4T−30T2−240T3+195T4+18372T5+77388T6−230240T7−1438395T8−230240pT9+77388p2T10+18372p3T11+195p4T12−240p5T13−30p6T14+4p7T15+p8T16 |
| 43 | 1−5pT2+22911T4−1578205T6+78597176T8−1578205p2T10+22911p4T12−5p7T14+p8T16 |
| 47 | 1+110T2−90T3+4101T4−9900T5−3830T6−910260T7−5610889T8−910260pT9−3830p2T10−9900p3T11+4101p4T12−90p5T13+110p6T14+p8T16 |
| 53 | 1+10T+100T2+1625T3+11531T4+95310T5+857875T6+5635035T7+42472426T8+5635035pT9+857875p2T10+95310p3T11+11531p4T12+1625p5T13+100p6T14+10p7T15+p8T16 |
| 59 | 1−2pT2+900T3+3393T4−96300T5+615034T6+2943900T7−65890945T8+2943900pT9+615034p2T10−96300p3T11+3393p4T12+900p5T13−2p7T14+p8T16 |
| 61 | 1+9T−165T2−1800T3+7560T4+154437T5+526138T6−4559670T7−69838275T8−4559670pT9+526138p2T10+154437p3T11+7560p4T12−1800p5T13−165p6T14+9p7T15+p8T16 |
| 67 | 1−20T+250T2−2600T3+26091T4−241820T5+2034700T6−15361680T7+117317461T8−15361680pT9+2034700p2T10−241820p3T11+26091p4T12−2600p5T13+250p6T14−20p7T15+p8T16 |
| 71 | 1−6T−910T3+4875T4+34402T5+474398T6−3835500T7−25760305T8−3835500pT9+474398p2T10+34402p3T11+4875p4T12−910p5T13−6p7T15+p8T16 |
| 73 | 1−15T+195T2−1340T3+15786T4−132465T5+1900340T6−200800pT7+154250461T8−200800p2T9+1900340p2T10−132465p3T11+15786p4T12−1340p5T13+195p6T14−15p7T15+p8T16 |
| 79 | 1−15T−58T2+2180T3−7802T4−148865T5+1559169T6+5584500T7−169067020T8+5584500pT9+1559169p2T10−148865p3T11−7802p4T12+2180p5T13−58p6T14−15p7T15+p8T16 |
| 83 | 1+45T+1115T2+19890T3+284376T4+3450645T5+448160pT6+367888080T7+3431240591T8+367888080pT9+448160p3T10+3450645p3T11+284376p4T12+19890p5T13+1115p6T14+45p7T15+p8T16 |
| 89 | 1+25T+342T2+5000T3+78868T4+928525T5+9098049T6+101226750T7+1076434080T8+101226750pT9+9098049p2T10+928525p3T11+78868p4T12+5000p5T13+342p6T14+25p7T15+p8T16 |
| 97 | 1+60T+1830T2+35660T3+467711T4+3770460T5+6583460T6−292271720T7−4451764059T8−292271720pT9+6583460p2T10+3770460p3T11+467711p4T12+35660p5T13+1830p6T14+60p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.264606005725786684581250817764, −8.701519957482883251445840148556, −8.700756789123480086234663064578, −8.587410407659643003356611381504, −8.313327649596639150128601111549, −8.022729140610343966777265765300, −8.000658794287396241187871279826, −7.73124663888318285965963720408, −7.37214446289042285892258381094, −7.31387626590244159416471837223, −7.04203274766215539700169588614, −6.85744330449983430802479407420, −6.54132635344714138363853998282, −6.45852707771919679444432037317, −5.82385696664051564495606249014, −5.66095007107135267912137327348, −5.61736961642789035495983217468, −5.52198619498244300122709572032, −4.97705277057159681438592943029, −4.73810456658168035860164939240, −4.36048904079619467511194010037, −4.20351592571445873243353432084, −3.98048819631383695223672152000, −2.51905553356217036605454282958, −2.48425883173590507807753867406,
2.48425883173590507807753867406, 2.51905553356217036605454282958, 3.98048819631383695223672152000, 4.20351592571445873243353432084, 4.36048904079619467511194010037, 4.73810456658168035860164939240, 4.97705277057159681438592943029, 5.52198619498244300122709572032, 5.61736961642789035495983217468, 5.66095007107135267912137327348, 5.82385696664051564495606249014, 6.45852707771919679444432037317, 6.54132635344714138363853998282, 6.85744330449983430802479407420, 7.04203274766215539700169588614, 7.31387626590244159416471837223, 7.37214446289042285892258381094, 7.73124663888318285965963720408, 8.000658794287396241187871279826, 8.022729140610343966777265765300, 8.313327649596639150128601111549, 8.587410407659643003356611381504, 8.700756789123480086234663064578, 8.701519957482883251445840148556, 9.264606005725786684581250817764
Plot not available for L-functions of degree greater than 10.