L(s) = 1 | + 9·25-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + 257-s + 263-s + ⋯ |
L(s) = 1 | + 9·25-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + 257-s + 263-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 563^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{18} \cdot 563^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.580605799\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.580605799\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 563 | \( ( 1 - T )^{9} \) |
good | 3 | \( 1 + T^{9} + T^{18} \) |
| 5 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 7 | \( 1 + T^{9} + T^{18} \) |
| 11 | \( ( 1 + T^{3} + T^{6} )^{3} \) |
| 13 | \( ( 1 + T^{3} + T^{6} )^{3} \) |
| 17 | \( 1 + T^{9} + T^{18} \) |
| 19 | \( 1 + T^{9} + T^{18} \) |
| 23 | \( 1 + T^{9} + T^{18} \) |
| 29 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 31 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 37 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 41 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 43 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 47 | \( 1 + T^{9} + T^{18} \) |
| 53 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 59 | \( 1 + T^{9} + T^{18} \) |
| 61 | \( 1 + T^{9} + T^{18} \) |
| 67 | \( 1 + T^{9} + T^{18} \) |
| 71 | \( 1 + T^{9} + T^{18} \) |
| 73 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 79 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 83 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 89 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 97 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{18} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.47539300418552690642811392844, −3.45702381767122316480661746932, −3.31454544763523863571787738310, −3.29892507157274216071246145168, −3.29776619003459381464757921300, −3.29374942974297752209877609742, −3.15147785968101158765817534433, −2.85187960741179600182163719935, −2.70162039438089637305471319333, −2.65332490613054074703632286503, −2.56672593193524420916362827496, −2.54120884557246844270772852873, −2.32588419477926953933161235694, −2.32429506822983432508869480497, −2.29261725614863923775033795529, −1.88546027104268711336205415823, −1.82937618635833034914112576186, −1.56197790536077946741891271994, −1.31905885988994266383484269465, −1.29470870699975285602584800636, −1.28416884147980740679574925073, −1.08281695375897246588041831662, −1.00228406876684600882143098439, −0.70943252120915702779488196197, −0.59101860870745974210120487340,
0.59101860870745974210120487340, 0.70943252120915702779488196197, 1.00228406876684600882143098439, 1.08281695375897246588041831662, 1.28416884147980740679574925073, 1.29470870699975285602584800636, 1.31905885988994266383484269465, 1.56197790536077946741891271994, 1.82937618635833034914112576186, 1.88546027104268711336205415823, 2.29261725614863923775033795529, 2.32429506822983432508869480497, 2.32588419477926953933161235694, 2.54120884557246844270772852873, 2.56672593193524420916362827496, 2.65332490613054074703632286503, 2.70162039438089637305471319333, 2.85187960741179600182163719935, 3.15147785968101158765817534433, 3.29374942974297752209877609742, 3.29776619003459381464757921300, 3.29892507157274216071246145168, 3.31454544763523863571787738310, 3.45702381767122316480661746932, 3.47539300418552690642811392844
Plot not available for L-functions of degree greater than 10.