L(s) = 1 | − i·2-s − 4-s + i·8-s + 9-s + 2i·13-s + 16-s + i·17-s − i·18-s + 2·26-s − i·32-s + 34-s − 36-s + 49-s − 2i·52-s − 2i·53-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + i·8-s + 9-s + 2i·13-s + 16-s + i·17-s − i·18-s + 2·26-s − i·32-s + 34-s − 36-s + 49-s − 2i·52-s − 2i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.058829339\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.058829339\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 - iT \) |
good | 3 | \( 1 - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - 2iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 2iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.550987724788604379431264379495, −8.947034852315499554544232547344, −8.109091838592266158893116795767, −7.07884851431177866454503796137, −6.29059528335442226075537437258, −5.06841425462184414006062935921, −4.21931866556954222613572583014, −3.70773392692290291612075294082, −2.22085192687463278883090077162, −1.48014408051926811139872589975,
0.948393339903121943391961748045, 2.84927817052814625843250387070, 3.90192539579700297486776828678, 4.87696887015863872538826880717, 5.53969064161163281918024913047, 6.41533775595560043029732049518, 7.43011918093119782203783332410, 7.69605804913797349617944069976, 8.685197224461549113258892412836, 9.493249164785248564425325113513