L(s) = 1 | − i·2-s − 4-s + i·8-s + 9-s + 2i·13-s + 16-s + i·17-s − i·18-s + 2·26-s − i·32-s + 34-s − 36-s + 49-s − 2i·52-s − 2i·53-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + i·8-s + 9-s + 2i·13-s + 16-s + i·17-s − i·18-s + 2·26-s − i·32-s + 34-s − 36-s + 49-s − 2i·52-s − 2i·53-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.894+0.447i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1699,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), 0.894+0.447i)
|
Particular Values
L(21) |
≈ |
1.058829339 |
L(21) |
≈ |
1.058829339 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 17 | 1−iT |
good | 3 | 1−T2 |
| 7 | 1−T2 |
| 11 | 1+T2 |
| 13 | 1−2iT−T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1+T2 |
| 53 | 1+2iT−T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+T2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1+T2 |
| 83 | 1+T2 |
| 89 | 1−2T+T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.550987724788604379431264379495, −8.947034852315499554544232547344, −8.109091838592266158893116795767, −7.07884851431177866454503796137, −6.29059528335442226075537437258, −5.06841425462184414006062935921, −4.21931866556954222613572583014, −3.70773392692290291612075294082, −2.22085192687463278883090077162, −1.48014408051926811139872589975,
0.948393339903121943391961748045, 2.84927817052814625843250387070, 3.90192539579700297486776828678, 4.87696887015863872538826880717, 5.53969064161163281918024913047, 6.41533775595560043029732049518, 7.43011918093119782203783332410, 7.69605804913797349617944069976, 8.685197224461549113258892412836, 9.493249164785248564425325113513