Properties

Label 1700.1.d.b.1699.1
Level 17001700
Weight 11
Character 1700.1699
Analytic conductor 0.8480.848
Analytic rank 00
Dimension 22
Projective image D2D_{2}
CM/RM discs -4, -68, 17
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1700,1,Mod(1699,1700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1700.1699");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1700=225217 1700 = 2^{2} \cdot 5^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1700.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8484105214760.848410521476
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 68)
Projective image: D2D_{2}
Projective field: Galois closure of Q(i,17)\Q(i, \sqrt{17})
Artin image: D4:C2D_4:C_2
Artin field: Galois closure of 8.0.1156000000.2

Embedding invariants

Embedding label 1699.1
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 1700.1699
Dual form 1700.1.d.b.1699.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q4+1.00000iq8+1.00000q9+2.00000iq13+1.00000q16+1.00000iq171.00000iq18+2.00000q261.00000iq32+1.00000q341.00000q36+1.00000q492.00000iq522.00000iq531.00000q641.00000iq68+1.00000iq72+1.00000q81+2.00000q891.00000iq98+O(q100)q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{8} +1.00000 q^{9} +2.00000i q^{13} +1.00000 q^{16} +1.00000i q^{17} -1.00000i q^{18} +2.00000 q^{26} -1.00000i q^{32} +1.00000 q^{34} -1.00000 q^{36} +1.00000 q^{49} -2.00000i q^{52} -2.00000i q^{53} -1.00000 q^{64} -1.00000i q^{68} +1.00000i q^{72} +1.00000 q^{81} +2.00000 q^{89} -1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+2q9+2q16+4q26+2q342q36+2q492q64+2q81+4q89+O(q100) 2 q - 2 q^{4} + 2 q^{9} + 2 q^{16} + 4 q^{26} + 2 q^{34} - 2 q^{36} + 2 q^{49} - 2 q^{64} + 2 q^{81} + 4 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1700Z)×\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times.

nn 477477 851851 16011601
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 1.00000i
33 0 0 1.00000 00
−1.00000 π\pi
44 −1.00000 −1.00000
55 0 0
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 1.00000i 1.00000i
99 1.00000 1.00000
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 1.00000 1.00000
1717 1.00000i 1.00000i
1818 − 1.00000i − 1.00000i
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 0 0
2626 2.00000 2.00000
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 − 1.00000i − 1.00000i
3333 0 0
3434 1.00000 1.00000
3535 0 0
3636 −1.00000 −1.00000
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 1.00000 1.00000
5050 0 0
5151 0 0
5252 − 2.00000i − 2.00000i
5353 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 − 1.00000i − 1.00000i
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 1.00000i 1.00000i
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 1.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 2.00000 2.00000 1.00000 00
1.00000 00
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 − 1.00000i − 1.00000i
9999 0 0
100100 0 0
101101 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 −2.00000 −2.00000
105105 0 0
106106 −2.00000 −2.00000
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 2.00000i 2.00000i
118118 0 0
119119 0 0
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 1.00000i 1.00000i
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −1.00000 −1.00000
137137 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 1.00000i 1.00000i
154154 0 0
155155 0 0
156156 0 0
157157 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 − 1.00000i − 1.00000i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −3.00000 −3.00000
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 − 2.00000i − 2.00000i
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 −1.00000 −1.00000
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 2.00000i 2.00000i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 2.00000i 2.00000i
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 2.00000i 2.00000i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 −2.00000 −2.00000
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 2.00000 2.00000 1.00000 00
1.00000 00
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 2.00000 2.00000
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 1.00000i 1.00000i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 1.00000i 1.00000i
273273 0 0
274274 −2.00000 −2.00000
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 2.00000 2.00000 1.00000 00
1.00000 00
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 − 1.00000i − 1.00000i
289289 −1.00000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 2.00000i 2.00000i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 1.00000 1.00000
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 2.00000 2.00000
315315 0 0
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 −1.00000 −1.00000
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 3.00000i 3.00000i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
354354 0 0
355355 0 0
356356 −2.00000 −2.00000
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 2.00000 2.00000 1.00000 00
1.00000 00
390390 0 0
391391 0 0
392392 1.00000i 1.00000i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 2.00000 2.00000
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 2.00000 2.00000
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
422422 0 0
423423 0 0
424424 2.00000 2.00000
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 1.00000 1.00000
442442 2.00000i 2.00000i
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
458458 − 2.00000i − 2.00000i
459459 0 0
460460 0 0
461461 2.00000 2.00000 1.00000 00
1.00000 00
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 − 2.00000i − 2.00000i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 − 2.00000i − 2.00000i
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 1.00000 1.00000
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
510510 0 0
511511 0 0
512512 − 1.00000i − 1.00000i
513513 0 0
514514 −2.00000 −2.00000
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.00000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 1.00000 1.00000
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 2.00000i 2.00000i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 − 2.00000i − 2.00000i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −1.00000 −1.00000
577577 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
578578 1.00000i 1.00000i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −2.00000 −2.00000
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
594594 0 0
595595 0 0
596596 2.00000 2.00000
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 − 1.00000i − 1.00000i
613613 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 − 2.00000i − 2.00000i
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 2.00000i 2.00000i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 1.00000i 1.00000i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 2.00000 2.00000 1.00000 00
1.00000 00
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 3.00000 3.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 4.00000 4.00000
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 2.00000i 2.00000i
699699 0 0
700700 0 0
701701 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −2.00000 −2.00000
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 2.00000i 2.00000i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 − 1.00000i − 1.00000i
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 2.00000 2.00000
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 2.00000 2.00000 1.00000 00
1.00000 00
770770 0 0
771771 0 0
772772 0 0
773773 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 − 2.00000i − 2.00000i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 2.00000 2.00000
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 − 2.00000i − 2.00000i
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 2.00000i 2.00000i
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
830830 0 0
831831 0 0
832832 − 2.00000i − 2.00000i
833833 1.00000i 1.00000i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 1.00000 1.00000
842842 2.00000i 2.00000i
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 − 2.00000i − 2.00000i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 2.00000 2.00000
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 − 1.00000i − 1.00000i
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 2.00000 2.00000
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 2.00000 2.00000
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 −2.00000 −2.00000
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 −2.00000 −2.00000
915915 0 0
916916 −2.00000 −2.00000
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 − 2.00000i − 2.00000i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 −2.00000 −2.00000
937937 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
954954 −2.00000 −2.00000
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 − 1.00000i − 1.00000i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.1.d.b.1699.1 2
4.3 odd 2 CM 1700.1.d.b.1699.1 2
5.2 odd 4 1700.1.h.d.951.1 1
5.3 odd 4 68.1.d.a.67.1 1
5.4 even 2 inner 1700.1.d.b.1699.2 2
15.8 even 4 612.1.e.a.271.1 1
17.16 even 2 RM 1700.1.d.b.1699.1 2
20.3 even 4 68.1.d.a.67.1 1
20.7 even 4 1700.1.h.d.951.1 1
20.19 odd 2 inner 1700.1.d.b.1699.2 2
35.3 even 12 3332.1.o.d.2039.1 2
35.13 even 4 3332.1.g.a.883.1 1
35.18 odd 12 3332.1.o.c.2039.1 2
35.23 odd 12 3332.1.o.c.67.1 2
35.33 even 12 3332.1.o.d.67.1 2
40.3 even 4 1088.1.g.a.1087.1 1
40.13 odd 4 1088.1.g.a.1087.1 1
60.23 odd 4 612.1.e.a.271.1 1
68.67 odd 2 CM 1700.1.d.b.1699.1 2
85.3 even 16 1156.1.g.a.399.1 4
85.8 odd 8 1156.1.f.a.327.1 2
85.13 odd 4 1156.1.c.a.579.1 1
85.23 even 16 1156.1.g.a.423.1 4
85.28 even 16 1156.1.g.a.423.1 4
85.33 odd 4 68.1.d.a.67.1 1
85.38 odd 4 1156.1.c.a.579.1 1
85.43 odd 8 1156.1.f.a.327.1 2
85.48 even 16 1156.1.g.a.399.1 4
85.53 odd 8 1156.1.f.a.251.1 2
85.58 even 16 1156.1.g.a.155.1 4
85.63 even 16 1156.1.g.a.179.1 4
85.67 odd 4 1700.1.h.d.951.1 1
85.73 even 16 1156.1.g.a.179.1 4
85.78 even 16 1156.1.g.a.155.1 4
85.83 odd 8 1156.1.f.a.251.1 2
85.84 even 2 inner 1700.1.d.b.1699.2 2
140.3 odd 12 3332.1.o.d.2039.1 2
140.23 even 12 3332.1.o.c.67.1 2
140.83 odd 4 3332.1.g.a.883.1 1
140.103 odd 12 3332.1.o.d.67.1 2
140.123 even 12 3332.1.o.c.2039.1 2
255.203 even 4 612.1.e.a.271.1 1
340.3 odd 16 1156.1.g.a.399.1 4
340.23 odd 16 1156.1.g.a.423.1 4
340.43 even 8 1156.1.f.a.327.1 2
340.63 odd 16 1156.1.g.a.179.1 4
340.67 even 4 1700.1.h.d.951.1 1
340.83 even 8 1156.1.f.a.251.1 2
340.123 even 4 1156.1.c.a.579.1 1
340.143 odd 16 1156.1.g.a.155.1 4
340.163 odd 16 1156.1.g.a.155.1 4
340.183 even 4 1156.1.c.a.579.1 1
340.203 even 4 68.1.d.a.67.1 1
340.223 even 8 1156.1.f.a.251.1 2
340.243 odd 16 1156.1.g.a.179.1 4
340.263 even 8 1156.1.f.a.327.1 2
340.283 odd 16 1156.1.g.a.423.1 4
340.303 odd 16 1156.1.g.a.399.1 4
340.339 odd 2 inner 1700.1.d.b.1699.2 2
595.33 even 12 3332.1.o.d.67.1 2
595.118 even 4 3332.1.g.a.883.1 1
595.373 odd 12 3332.1.o.c.67.1 2
595.458 even 12 3332.1.o.d.2039.1 2
595.543 odd 12 3332.1.o.c.2039.1 2
680.203 even 4 1088.1.g.a.1087.1 1
680.373 odd 4 1088.1.g.a.1087.1 1
1020.203 odd 4 612.1.e.a.271.1 1
2380.543 even 12 3332.1.o.c.2039.1 2
2380.1223 odd 12 3332.1.o.d.67.1 2
2380.1563 even 12 3332.1.o.c.67.1 2
2380.1903 odd 4 3332.1.g.a.883.1 1
2380.2243 odd 12 3332.1.o.d.2039.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.1.d.a.67.1 1 5.3 odd 4
68.1.d.a.67.1 1 20.3 even 4
68.1.d.a.67.1 1 85.33 odd 4
68.1.d.a.67.1 1 340.203 even 4
612.1.e.a.271.1 1 15.8 even 4
612.1.e.a.271.1 1 60.23 odd 4
612.1.e.a.271.1 1 255.203 even 4
612.1.e.a.271.1 1 1020.203 odd 4
1088.1.g.a.1087.1 1 40.3 even 4
1088.1.g.a.1087.1 1 40.13 odd 4
1088.1.g.a.1087.1 1 680.203 even 4
1088.1.g.a.1087.1 1 680.373 odd 4
1156.1.c.a.579.1 1 85.13 odd 4
1156.1.c.a.579.1 1 85.38 odd 4
1156.1.c.a.579.1 1 340.123 even 4
1156.1.c.a.579.1 1 340.183 even 4
1156.1.f.a.251.1 2 85.53 odd 8
1156.1.f.a.251.1 2 85.83 odd 8
1156.1.f.a.251.1 2 340.83 even 8
1156.1.f.a.251.1 2 340.223 even 8
1156.1.f.a.327.1 2 85.8 odd 8
1156.1.f.a.327.1 2 85.43 odd 8
1156.1.f.a.327.1 2 340.43 even 8
1156.1.f.a.327.1 2 340.263 even 8
1156.1.g.a.155.1 4 85.58 even 16
1156.1.g.a.155.1 4 85.78 even 16
1156.1.g.a.155.1 4 340.143 odd 16
1156.1.g.a.155.1 4 340.163 odd 16
1156.1.g.a.179.1 4 85.63 even 16
1156.1.g.a.179.1 4 85.73 even 16
1156.1.g.a.179.1 4 340.63 odd 16
1156.1.g.a.179.1 4 340.243 odd 16
1156.1.g.a.399.1 4 85.3 even 16
1156.1.g.a.399.1 4 85.48 even 16
1156.1.g.a.399.1 4 340.3 odd 16
1156.1.g.a.399.1 4 340.303 odd 16
1156.1.g.a.423.1 4 85.23 even 16
1156.1.g.a.423.1 4 85.28 even 16
1156.1.g.a.423.1 4 340.23 odd 16
1156.1.g.a.423.1 4 340.283 odd 16
1700.1.d.b.1699.1 2 1.1 even 1 trivial
1700.1.d.b.1699.1 2 4.3 odd 2 CM
1700.1.d.b.1699.1 2 17.16 even 2 RM
1700.1.d.b.1699.1 2 68.67 odd 2 CM
1700.1.d.b.1699.2 2 5.4 even 2 inner
1700.1.d.b.1699.2 2 20.19 odd 2 inner
1700.1.d.b.1699.2 2 85.84 even 2 inner
1700.1.d.b.1699.2 2 340.339 odd 2 inner
1700.1.h.d.951.1 1 5.2 odd 4
1700.1.h.d.951.1 1 20.7 even 4
1700.1.h.d.951.1 1 85.67 odd 4
1700.1.h.d.951.1 1 340.67 even 4
3332.1.g.a.883.1 1 35.13 even 4
3332.1.g.a.883.1 1 140.83 odd 4
3332.1.g.a.883.1 1 595.118 even 4
3332.1.g.a.883.1 1 2380.1903 odd 4
3332.1.o.c.67.1 2 35.23 odd 12
3332.1.o.c.67.1 2 140.23 even 12
3332.1.o.c.67.1 2 595.373 odd 12
3332.1.o.c.67.1 2 2380.1563 even 12
3332.1.o.c.2039.1 2 35.18 odd 12
3332.1.o.c.2039.1 2 140.123 even 12
3332.1.o.c.2039.1 2 595.543 odd 12
3332.1.o.c.2039.1 2 2380.543 even 12
3332.1.o.d.67.1 2 35.33 even 12
3332.1.o.d.67.1 2 140.103 odd 12
3332.1.o.d.67.1 2 595.33 even 12
3332.1.o.d.67.1 2 2380.1223 odd 12
3332.1.o.d.2039.1 2 35.3 even 12
3332.1.o.d.2039.1 2 140.3 odd 12
3332.1.o.d.2039.1 2 595.458 even 12
3332.1.o.d.2039.1 2 2380.2243 odd 12