L(s) = 1 | − 2-s + 1.53·5-s + 8-s + 9-s − 1.53·10-s + 1.53·11-s − 1.87·13-s − 16-s + 1.53·17-s − 18-s − 1.53·22-s + 0.347·23-s + 1.34·25-s + 1.87·26-s − 31-s − 1.53·34-s + 1.53·40-s − 1.87·41-s − 1.87·43-s + 1.53·45-s − 0.347·46-s − 1.87·47-s + 49-s − 1.34·50-s + 0.347·53-s + 2.34·55-s + 62-s + ⋯ |
L(s) = 1 | − 2-s + 1.53·5-s + 8-s + 9-s − 1.53·10-s + 1.53·11-s − 1.87·13-s − 16-s + 1.53·17-s − 18-s − 1.53·22-s + 0.347·23-s + 1.34·25-s + 1.87·26-s − 31-s − 1.53·34-s + 1.53·40-s − 1.87·41-s − 1.87·43-s + 1.53·45-s − 0.347·46-s − 1.87·47-s + 49-s − 1.34·50-s + 0.347·53-s + 2.34·55-s + 62-s + ⋯ |
Λ(s)=(=(1759s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1759s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1759
|
Sign: |
1
|
Analytic conductor: |
0.877855 |
Root analytic conductor: |
0.936939 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1759(1758,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1759, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.9302675303 |
L(21) |
≈ |
0.9302675303 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 1759 | 1−T |
good | 2 | 1+T+T2 |
| 3 | 1−T2 |
| 5 | 1−1.53T+T2 |
| 7 | 1−T2 |
| 11 | 1−1.53T+T2 |
| 13 | 1+1.87T+T2 |
| 17 | 1−1.53T+T2 |
| 19 | 1−T2 |
| 23 | 1−0.347T+T2 |
| 29 | 1−T2 |
| 31 | 1+T+T2 |
| 37 | 1−T2 |
| 41 | 1+1.87T+T2 |
| 43 | 1+1.87T+T2 |
| 47 | 1+1.87T+T2 |
| 53 | 1−0.347T+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1−0.347T+T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−2T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.594561576886732151215276120247, −9.061196552208389652710906885188, −8.007014336265295763649067814375, −7.08214067452355679434743392122, −6.64653186810739069561181595495, −5.33970252119321555311650545523, −4.78912658868857599530870358859, −3.51122826036390459186817033217, −1.95418773147952980826953839856, −1.36010945604830553381911373416,
1.36010945604830553381911373416, 1.95418773147952980826953839856, 3.51122826036390459186817033217, 4.78912658868857599530870358859, 5.33970252119321555311650545523, 6.64653186810739069561181595495, 7.08214067452355679434743392122, 8.007014336265295763649067814375, 9.061196552208389652710906885188, 9.594561576886732151215276120247