Properties

Label 2-1759-1759.1758-c0-0-7
Degree $2$
Conductor $1759$
Sign $1$
Analytic cond. $0.877855$
Root an. cond. $0.936939$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.53·5-s + 8-s + 9-s − 1.53·10-s + 1.53·11-s − 1.87·13-s − 16-s + 1.53·17-s − 18-s − 1.53·22-s + 0.347·23-s + 1.34·25-s + 1.87·26-s − 31-s − 1.53·34-s + 1.53·40-s − 1.87·41-s − 1.87·43-s + 1.53·45-s − 0.347·46-s − 1.87·47-s + 49-s − 1.34·50-s + 0.347·53-s + 2.34·55-s + 62-s + ⋯
L(s)  = 1  − 2-s + 1.53·5-s + 8-s + 9-s − 1.53·10-s + 1.53·11-s − 1.87·13-s − 16-s + 1.53·17-s − 18-s − 1.53·22-s + 0.347·23-s + 1.34·25-s + 1.87·26-s − 31-s − 1.53·34-s + 1.53·40-s − 1.87·41-s − 1.87·43-s + 1.53·45-s − 0.347·46-s − 1.87·47-s + 49-s − 1.34·50-s + 0.347·53-s + 2.34·55-s + 62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1759\)
Sign: $1$
Analytic conductor: \(0.877855\)
Root analytic conductor: \(0.936939\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1759} (1758, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1759,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9302675303\)
\(L(\frac12)\) \(\approx\) \(0.9302675303\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad1759 \( 1 - T \)
good2 \( 1 + T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - 1.53T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - 1.53T + T^{2} \)
13 \( 1 + 1.87T + T^{2} \)
17 \( 1 - 1.53T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - 0.347T + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 1.87T + T^{2} \)
43 \( 1 + 1.87T + T^{2} \)
47 \( 1 + 1.87T + T^{2} \)
53 \( 1 - 0.347T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - 0.347T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 2T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.594561576886732151215276120247, −9.061196552208389652710906885188, −8.007014336265295763649067814375, −7.08214067452355679434743392122, −6.64653186810739069561181595495, −5.33970252119321555311650545523, −4.78912658868857599530870358859, −3.51122826036390459186817033217, −1.95418773147952980826953839856, −1.36010945604830553381911373416, 1.36010945604830553381911373416, 1.95418773147952980826953839856, 3.51122826036390459186817033217, 4.78912658868857599530870358859, 5.33970252119321555311650545523, 6.64653186810739069561181595495, 7.08214067452355679434743392122, 8.007014336265295763649067814375, 9.061196552208389652710906885188, 9.594561576886732151215276120247

Graph of the $Z$-function along the critical line