Properties

Label 1759.1.b.b.1758.3
Level 17591759
Weight 11
Character 1759.1758
Self dual yes
Analytic conductor 0.8780.878
Analytic rank 00
Dimension 33
Projective image D9D_{9}
CM discriminant -1759
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,1,Mod(1758,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1758");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1759 1759
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1759.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.8778553572210.877855357221
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.9573337234561.1
Artin image: D9D_9
Artin field: Galois closure of 9.1.9573337234561.1

Embedding invariants

Embedding label 1758.3
Root 1.53209-1.53209 of defining polynomial
Character χ\chi == 1759.1758

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.53209q5+1.00000q8+1.00000q91.53209q10+1.53209q111.87939q131.00000q16+1.53209q171.00000q181.53209q22+0.347296q23+1.34730q25+1.87939q261.00000q311.53209q34+1.53209q401.87939q411.87939q43+1.53209q450.347296q461.87939q47+1.00000q491.34730q50+0.347296q53+2.34730q55+1.00000q62+1.00000q642.87939q65+0.347296q71+1.00000q721.53209q80+1.00000q81+1.87939q82+2.34730q85+1.87939q86+1.53209q88+2.00000q891.53209q90+1.87939q941.00000q98+1.53209q99+O(q100)q-1.00000 q^{2} +1.53209 q^{5} +1.00000 q^{8} +1.00000 q^{9} -1.53209 q^{10} +1.53209 q^{11} -1.87939 q^{13} -1.00000 q^{16} +1.53209 q^{17} -1.00000 q^{18} -1.53209 q^{22} +0.347296 q^{23} +1.34730 q^{25} +1.87939 q^{26} -1.00000 q^{31} -1.53209 q^{34} +1.53209 q^{40} -1.87939 q^{41} -1.87939 q^{43} +1.53209 q^{45} -0.347296 q^{46} -1.87939 q^{47} +1.00000 q^{49} -1.34730 q^{50} +0.347296 q^{53} +2.34730 q^{55} +1.00000 q^{62} +1.00000 q^{64} -2.87939 q^{65} +0.347296 q^{71} +1.00000 q^{72} -1.53209 q^{80} +1.00000 q^{81} +1.87939 q^{82} +2.34730 q^{85} +1.87939 q^{86} +1.53209 q^{88} +2.00000 q^{89} -1.53209 q^{90} +1.87939 q^{94} -1.00000 q^{98} +1.53209 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q2+3q8+3q93q163q18+3q253q31+3q493q50+6q55+3q62+3q643q65+3q72+3q81+6q85+6q893q98+O(q100) 3 q - 3 q^{2} + 3 q^{8} + 3 q^{9} - 3 q^{16} - 3 q^{18} + 3 q^{25} - 3 q^{31} + 3 q^{49} - 3 q^{50} + 6 q^{55} + 3 q^{62} + 3 q^{64} - 3 q^{65} + 3 q^{72} + 3 q^{81} + 6 q^{85} + 6 q^{89} - 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1759Z)×\left(\mathbb{Z}/1759\mathbb{Z}\right)^\times.

nn 66
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 0 0
55 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 1.00000 1.00000
99 1.00000 1.00000
1010 −1.53209 −1.53209
1111 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
1212 0 0
1313 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1414 0 0
1515 0 0
1616 −1.00000 −1.00000
1717 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
1818 −1.00000 −1.00000
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 −1.53209 −1.53209
2323 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
2424 0 0
2525 1.34730 1.34730
2626 1.87939 1.87939
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0 0
3333 0 0
3434 −1.53209 −1.53209
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 1.53209 1.53209
4141 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4242 0 0
4343 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4444 0 0
4545 1.53209 1.53209
4646 −0.347296 −0.347296
4747 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4848 0 0
4949 1.00000 1.00000
5050 −1.34730 −1.34730
5151 0 0
5252 0 0
5353 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
5454 0 0
5555 2.34730 2.34730
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 1.00000 1.00000
6363 0 0
6464 1.00000 1.00000
6565 −2.87939 −2.87939
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
7272 1.00000 1.00000
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 −1.53209 −1.53209
8181 1.00000 1.00000
8282 1.87939 1.87939
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 2.34730 2.34730
8686 1.87939 1.87939
8787 0 0
8888 1.53209 1.53209
8989 2.00000 2.00000 1.00000 00
1.00000 00
9090 −1.53209 −1.53209
9191 0 0
9292 0 0
9393 0 0
9494 1.87939 1.87939
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −1.00000 −1.00000
9999 1.53209 1.53209
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 −1.87939 −1.87939
105105 0 0
106106 −0.347296 −0.347296
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
110110 −2.34730 −2.34730
111111 0 0
112112 0 0
113113 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 0 0
115115 0.532089 0.532089
116116 0 0
117117 −1.87939 −1.87939
118118 0 0
119119 0 0
120120 0 0
121121 1.34730 1.34730
122122 0 0
123123 0 0
124124 0 0
125125 0.532089 0.532089
126126 0 0
127127 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
128128 −1.00000 −1.00000
129129 0 0
130130 2.87939 2.87939
131131 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 1.53209 1.53209
137137 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −0.347296 −0.347296
143143 −2.87939 −2.87939
144144 −1.00000 −1.00000
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 1.53209 1.53209
154154 0 0
155155 −1.53209 −1.53209
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 −1.00000 −1.00000
163163 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 2.53209 2.53209
170170 −2.34730 −2.34730
171171 0 0
172172 0 0
173173 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
174174 0 0
175175 0 0
176176 −1.53209 −1.53209
177177 0 0
178178 −2.00000 −2.00000
179179 2.00000 2.00000 1.00000 00
1.00000 00
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0.347296 0.347296
185185 0 0
186186 0 0
187187 2.34730 2.34730
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 −1.53209 −1.53209
199199 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
200200 1.34730 1.34730
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −2.87939 −2.87939
206206 0 0
207207 0.347296 0.347296
208208 1.87939 1.87939
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 −2.87939 −2.87939
216216 0 0
217217 0 0
218218 1.87939 1.87939
219219 0 0
220220 0 0
221221 −2.87939 −2.87939
222222 0 0
223223 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 1.34730 1.34730
226226 1.00000 1.00000
227227 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 −0.532089 −0.532089
231231 0 0
232232 0 0
233233 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
234234 1.87939 1.87939
235235 −2.87939 −2.87939
236236 0 0
237237 0 0
238238 0 0
239239 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
240240 0 0
241241 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 −1.34730 −1.34730
243243 0 0
244244 0 0
245245 1.53209 1.53209
246246 0 0
247247 0 0
248248 −1.00000 −1.00000
249249 0 0
250250 −0.532089 −0.532089
251251 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
252252 0 0
253253 0.532089 0.532089
254254 −1.53209 −1.53209
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 −0.347296 −0.347296
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0.532089 0.532089
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
272272 −1.53209 −1.53209
273273 0 0
274274 −0.347296 −0.347296
275275 2.06418 2.06418
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 −1.00000 −1.00000
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 2.87939 2.87939
287287 0 0
288288 0 0
289289 1.34730 1.34730
290290 0 0
291291 0 0
292292 0 0
293293 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 1.00000 1.00000
299299 −0.652704 −0.652704
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 −1.53209 −1.53209
307307 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
308308 0 0
309309 0 0
310310 1.53209 1.53209
311311 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 1.53209 1.53209
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −2.53209 −2.53209
326326 1.87939 1.87939
327327 0 0
328328 −1.87939 −1.87939
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 2.00000 2.00000 1.00000 00
1.00000 00
338338 −2.53209 −2.53209
339339 0 0
340340 0 0
341341 −1.53209 −1.53209
342342 0 0
343343 0 0
344344 −1.87939 −1.87939
345345 0 0
346346 −1.53209 −1.53209
347347 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 2.00000 2.00000 1.00000 00
1.00000 00
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0.532089 0.532089
356356 0 0
357357 0 0
358358 −2.00000 −2.00000
359359 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
360360 1.53209 1.53209
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −0.347296 −0.347296
369369 −1.87939 −1.87939
370370 0 0
371371 0 0
372372 0 0
373373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 −2.34730 −2.34730
375375 0 0
376376 −1.87939 −1.87939
377377 0 0
378378 0 0
379379 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 −1.87939 −1.87939
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0.532089 0.532089
392392 1.00000 1.00000
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
398398 1.87939 1.87939
399399 0 0
400400 −1.34730 −1.34730
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 1.87939 1.87939
404404 0 0
405405 1.53209 1.53209
406406 0 0
407407 0 0
408408 0 0
409409 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
410410 2.87939 2.87939
411411 0 0
412412 0 0
413413 0 0
414414 −0.347296 −0.347296
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
420420 0 0
421421 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
422422 0 0
423423 −1.87939 −1.87939
424424 0.347296 0.347296
425425 2.06418 2.06418
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 2.87939 2.87939
431431 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
432432 0 0
433433 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
440440 2.34730 2.34730
441441 1.00000 1.00000
442442 2.87939 2.87939
443443 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 3.06418 3.06418
446446 1.00000 1.00000
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −1.34730 −1.34730
451451 −2.87939 −2.87939
452452 0 0
453453 0 0
454454 1.00000 1.00000
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −0.347296 −0.347296
467467 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
468468 0 0
469469 0 0
470470 2.87939 2.87939
471471 0 0
472472 0 0
473473 −2.87939 −2.87939
474474 0 0
475475 0 0
476476 0 0
477477 0.347296 0.347296
478478 −1.53209 −1.53209
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 1.00000 1.00000
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
488488 0 0
489489 0 0
490490 −1.53209 −1.53209
491491 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
492492 0 0
493493 0 0
494494 0 0
495495 2.34730 2.34730
496496 1.00000 1.00000
497497 0 0
498498 0 0
499499 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
500500 0 0
501501 0 0
502502 1.87939 1.87939
503503 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
504504 0 0
505505 0 0
506506 −0.532089 −0.532089
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −2.87939 −2.87939
518518 0 0
519519 0 0
520520 −2.87939 −2.87939
521521 2.00000 2.00000 1.00000 00
1.00000 00
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 −1.53209 −1.53209
528528 0 0
529529 −0.879385 −0.879385
530530 −0.532089 −0.532089
531531 0 0
532532 0 0
533533 3.53209 3.53209
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 1.53209 1.53209
540540 0 0
541541 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
542542 1.87939 1.87939
543543 0 0
544544 0 0
545545 −2.87939 −2.87939
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0 0
550550 −2.06418 −2.06418
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
558558 1.00000 1.00000
559559 3.53209 3.53209
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 −1.53209 −1.53209
566566 0 0
567567 0 0
568568 0.347296 0.347296
569569 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
570570 0 0
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.467911 0.467911
576576 1.00000 1.00000
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −1.34730 −1.34730
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.532089 0.532089
584584 0 0
585585 −2.87939 −2.87939
586586 −0.347296 −0.347296
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0.652704 0.652704
599599 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 2.06418 2.06418
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 3.53209 3.53209
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 −0.347296 −0.347296
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 1.00000 1.00000
623623 0 0
624624 0 0
625625 −0.532089 −0.532089
626626 1.00000 1.00000
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
632632 0 0
633633 0 0
634634 0 0
635635 2.34730 2.34730
636636 0 0
637637 −1.87939 −1.87939
638638 0 0
639639 0.347296 0.347296
640640 −1.53209 −1.53209
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
648648 1.00000 1.00000
649649 0 0
650650 2.53209 2.53209
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0.532089 0.532089
656656 1.87939 1.87939
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 −2.00000 −2.00000
675675 0 0
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 2.34730 2.34730
681681 0 0
682682 1.53209 1.53209
683683 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
684684 0 0
685685 0.532089 0.532089
686686 0 0
687687 0 0
688688 1.87939 1.87939
689689 −0.652704 −0.652704
690690 0 0
691691 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
692692 0 0
693693 0 0
694694 1.00000 1.00000
695695 0 0
696696 0 0
697697 −2.87939 −2.87939
698698 −2.00000 −2.00000
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 1.53209 1.53209
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 −0.532089 −0.532089
711711 0 0
712712 2.00000 2.00000
713713 −0.347296 −0.347296
714714 0 0
715715 −4.41147 −4.41147
716716 0 0
717717 0 0
718718 −1.53209 −1.53209
719719 0 0 1.00000 00
−1.00000 π\pi
720720 −1.53209 −1.53209
721721 0 0
722722 −1.00000 −1.00000
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 −2.87939 −2.87939
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 1.87939 1.87939
739739 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 −1.53209 −1.53209
746746 1.00000 1.00000
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
752752 1.87939 1.87939
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −0.347296 −0.347296
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 2.34730 2.34730
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
774774 1.87939 1.87939
775775 −1.34730 −1.34730
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0.532089 0.532089
782782 −0.532089 −0.532089
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 1.53209 1.53209
793793 0 0
794794 1.87939 1.87939
795795 0 0
796796 0 0
797797 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
798798 0 0
799799 −2.87939 −2.87939
800800 0 0
801801 2.00000 2.00000
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 −1.87939 −1.87939
807807 0 0
808808 0 0
809809 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
810810 −1.53209 −1.53209
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 −2.87939 −2.87939
816816 0 0
817817 0 0
818818 −0.347296 −0.347296
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
830830 0 0
831831 0 0
832832 −1.87939 −1.87939
833833 1.53209 1.53209
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 −0.347296 −0.347296
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 −1.53209 −1.53209
843843 0 0
844844 0 0
845845 3.87939 3.87939
846846 1.87939 1.87939
847847 0 0
848848 −0.347296 −0.347296
849849 0 0
850850 −2.06418 −2.06418
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 1.87939 1.87939
863863 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
864864 0 0
865865 2.34730 2.34730
866866 1.00000 1.00000
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −1.87939 −1.87939
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 −0.347296 −0.347296
879879 0 0
880880 −2.34730 −2.34730
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −1.00000 −1.00000
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 1.00000 1.00000
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 −3.06418 −3.06418
891891 1.53209 1.53209
892892 0 0
893893 0 0
894894 0 0
895895 3.06418 3.06418
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0.532089 0.532089
902902 2.87939 2.87939
903903 0 0
904904 −1.00000 −1.00000
905905 0 0
906906 0 0
907907 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0.532089 0.532089
921921 0 0
922922 −0.347296 −0.347296
923923 −0.652704 −0.652704
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 −1.53209 −1.53209
935935 3.59627 3.59627
936936 −1.87939 −1.87939
937937 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 −0.652704 −0.652704
944944 0 0
945945 0 0
946946 2.87939 2.87939
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 −0.347296 −0.347296
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 1.34730 1.34730
969969 0 0
970970 0 0
971971 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
972972 0 0
973973 0 0
974974 −1.53209 −1.53209
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 3.06418 3.06418
980980 0 0
981981 −1.87939 −1.87939
982982 1.87939 1.87939
983983 2.00000 2.00000 1.00000 00
1.00000 00
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −0.652704 −0.652704
990990 −2.34730 −2.34730
991991 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 −2.87939 −2.87939
996996 0 0
997997 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 −1.53209 −1.53209
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.1.b.b.1758.3 3
1759.1758 odd 2 CM 1759.1.b.b.1758.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.1.b.b.1758.3 3 1.1 even 1 trivial
1759.1.b.b.1758.3 3 1759.1758 odd 2 CM