Properties

Label 2-2900-116.115-c0-0-5
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $1.44728$
Root an. cond. $1.20303$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 11-s − 12-s + 13-s + 16-s − 2·19-s + 22-s − 24-s + 26-s + 27-s + 29-s + 31-s + 32-s − 33-s − 2·38-s − 39-s − 43-s + 44-s − 47-s − 48-s + 49-s + 52-s + 53-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 11-s − 12-s + 13-s + 16-s − 2·19-s + 22-s − 24-s + 26-s + 27-s + 29-s + 31-s + 32-s − 33-s − 2·38-s − 39-s − 43-s + 44-s − 47-s − 48-s + 49-s + 52-s + 53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.44728\)
Root analytic conductor: \(1.20303\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2900} (2551, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.822108923\)
\(L(\frac12)\) \(\approx\) \(1.822108923\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 + T + T^{2} \)
7 \( ( 1 - T )( 1 + T ) \)
11 \( 1 - T + T^{2} \)
13 \( 1 - T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 + T )^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
31 \( 1 - T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( 1 + T + T^{2} \)
53 \( 1 - T + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( 1 - T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.711804801139918925210406180077, −8.257322408471460048710337538077, −6.92824913823010019044738440566, −6.35281642484554886536638259247, −6.08452743621292393512593483271, −5.04507259923213383029497128817, −4.34497923838476092007487724748, −3.60524622122909792481413289148, −2.43869249622059524125528432624, −1.21726200800458325626463581473, 1.21726200800458325626463581473, 2.43869249622059524125528432624, 3.60524622122909792481413289148, 4.34497923838476092007487724748, 5.04507259923213383029497128817, 6.08452743621292393512593483271, 6.35281642484554886536638259247, 6.92824913823010019044738440566, 8.257322408471460048710337538077, 8.711804801139918925210406180077

Graph of the $Z$-function along the critical line