Properties

Label 2.2900.6t3.b.a
Dimension $2$
Group $D_{6}$
Conductor $2900$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(2900\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 29 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.6728000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.116.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.116.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 2x^{4} + 6x^{3} + 17x^{2} + 16x + 16 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 9 a + 11 + \left(12 a + 10\right)\cdot 23 + \left(15 a + 18\right)\cdot 23^{2} + \left(12 a + 14\right)\cdot 23^{3} + \left(9 a + 13\right)\cdot 23^{4} + \left(20 a + 13\right)\cdot 23^{5} + \left(9 a + 20\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 a + 17 + 16\cdot 23 + 16\cdot 23^{2} + \left(20 a + 16\right)\cdot 23^{3} + \left(11 a + 18\right)\cdot 23^{4} + \left(22 a + 8\right)\cdot 23^{5} + \left(9 a + 1\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 10\cdot 23 + 23^{2} + 11\cdot 23^{3} + 17\cdot 23^{4} + 12\cdot 23^{5} + 4\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 a + 6 + \left(10 a + 3\right)\cdot 23 + \left(7 a + 14\right)\cdot 23^{2} + \left(10 a + 1\right)\cdot 23^{3} + \left(13 a + 20\right)\cdot 23^{4} + \left(2 a + 21\right)\cdot 23^{5} + \left(13 a + 19\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 17 a + 6 + \left(22 a + 11\right)\cdot 23 + \left(22 a + 16\right)\cdot 23^{2} + \left(2 a + 10\right)\cdot 23^{3} + \left(11 a + 22\right)\cdot 23^{4} + 18\cdot 23^{5} + \left(13 a + 21\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 + 16\cdot 23 + 23^{2} + 14\cdot 23^{3} + 22\cdot 23^{4} + 15\cdot 23^{5} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(1,2,6,5,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(2,3)(4,6)$$0$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$2$$3$$(1,6,4)(2,5,3)$$-1$
$2$$6$$(1,2,6,5,4,3)$$1$