L(s) = 1 | + (−0.5 + 0.866i)5-s + 7-s + (−0.5 − 0.866i)9-s + 11-s + (−1 − 1.73i)13-s + (0.5 − 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)35-s − 37-s + (0.5 − 0.866i)41-s + 0.999·45-s + (1 + 1.73i)47-s + (0.5 + 0.866i)53-s + (−0.5 + 0.866i)55-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)5-s + 7-s + (−0.5 − 0.866i)9-s + 11-s + (−1 − 1.73i)13-s + (0.5 − 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)35-s − 37-s + (0.5 − 0.866i)41-s + 0.999·45-s + (1 + 1.73i)47-s + (0.5 + 0.866i)53-s + (−0.5 + 0.866i)55-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.671+0.740i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.671+0.740i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.671+0.740i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.671+0.740i)
|
Particular Values
L(21) |
≈ |
1.146341705 |
L(21) |
≈ |
1.146341705 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.5−0.866i)T |
| 19 | 1+(−0.5+0.866i)T |
good | 3 | 1+(0.5+0.866i)T2 |
| 7 | 1−T+T2 |
| 11 | 1−T+T2 |
| 13 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1+T+T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 53 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 59 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.719707224417906527857920457540, −7.965064455222957655769838325575, −7.36760313654601233156382907999, −6.61962447106984075551930490720, −5.78837685987911999117401301561, −4.93924852574024289387332294438, −4.00222382936215213990925273132, −3.14876284602560299187250097473, −2.37953556364473894614404126086, −0.74695730338733601657553426168,
1.48731107266169626390219365833, 2.11394386211900300612107285870, 3.71668784814152797422293806826, 4.38003906219632290771811946169, 5.06798101386282369704926604996, 5.73887332879638268222262183474, 6.97852297093724148939125358379, 7.55062751389045490258270488112, 8.314671073311699696086634380387, 8.886269989091098314224352124940