Properties

Label 3040.1.cc.a
Level 30403040
Weight 11
Character orbit 3040.cc
Analytic conductor 1.5171.517
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -40
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(239,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3040=25519 3040 = 2^{5} \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3040.cc (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.517157638401.51715763840
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 760)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.14440.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ6q5+q7+ζ62q9+q11+2ζ62q13+ζ6q19+ζ62q23+ζ62q25ζ6q35q37+ζ6q41+q45++ζ62q99+O(q100) q - \zeta_{6} q^{5} + q^{7} + \zeta_{6}^{2} q^{9} + q^{11} + 2 \zeta_{6}^{2} q^{13} + \zeta_{6} q^{19} + \zeta_{6}^{2} q^{23} + \zeta_{6}^{2} q^{25} - \zeta_{6} q^{35} - q^{37} + \zeta_{6} q^{41} + q^{45} + \cdots + \zeta_{6}^{2} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq5+2q7q9+2q112q13+q19q23q25q352q37+q41+2q45+2q47+q53q55+2q59q63+4q65+2q77q81+q99+O(q100) 2 q - q^{5} + 2 q^{7} - q^{9} + 2 q^{11} - 2 q^{13} + q^{19} - q^{23} - q^{25} - q^{35} - 2 q^{37} + q^{41} + 2 q^{45} + 2 q^{47} + q^{53} - q^{55} + 2 q^{59} - q^{63} + 4 q^{65} + 2 q^{77} - q^{81}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3040Z)×\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times.

nn 191191 12171217 19211921 26612661
χ(n)\chi(n) 1-1 1-1 ζ62\zeta_{6}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
239.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −0.500000 + 0.866025i 0 1.00000 0 −0.500000 0.866025i 0
1679.1 0 0 0 −0.500000 0.866025i 0 1.00000 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by Q(10)\Q(\sqrt{-10})
19.c even 3 1 inner
760.bm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3040.1.cc.a 2
4.b odd 2 1 760.1.bm.a 2
5.b even 2 1 3040.1.cc.b 2
8.b even 2 1 760.1.bm.b yes 2
8.d odd 2 1 3040.1.cc.b 2
19.c even 3 1 inner 3040.1.cc.a 2
20.d odd 2 1 760.1.bm.b yes 2
20.e even 4 2 3800.1.bd.f 4
40.e odd 2 1 CM 3040.1.cc.a 2
40.f even 2 1 760.1.bm.a 2
40.i odd 4 2 3800.1.bd.f 4
76.g odd 6 1 760.1.bm.a 2
95.i even 6 1 3040.1.cc.b 2
152.k odd 6 1 3040.1.cc.b 2
152.p even 6 1 760.1.bm.b yes 2
380.p odd 6 1 760.1.bm.b yes 2
380.v even 12 2 3800.1.bd.f 4
760.z even 6 1 760.1.bm.a 2
760.bm odd 6 1 inner 3040.1.cc.a 2
760.br odd 12 2 3800.1.bd.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.1.bm.a 2 4.b odd 2 1
760.1.bm.a 2 40.f even 2 1
760.1.bm.a 2 76.g odd 6 1
760.1.bm.a 2 760.z even 6 1
760.1.bm.b yes 2 8.b even 2 1
760.1.bm.b yes 2 20.d odd 2 1
760.1.bm.b yes 2 152.p even 6 1
760.1.bm.b yes 2 380.p odd 6 1
3040.1.cc.a 2 1.a even 1 1 trivial
3040.1.cc.a 2 19.c even 3 1 inner
3040.1.cc.a 2 40.e odd 2 1 CM
3040.1.cc.a 2 760.bm odd 6 1 inner
3040.1.cc.b 2 5.b even 2 1
3040.1.cc.b 2 8.d odd 2 1
3040.1.cc.b 2 95.i even 6 1
3040.1.cc.b 2 152.k odd 6 1
3800.1.bd.f 4 20.e even 4 2
3800.1.bd.f 4 40.i odd 4 2
3800.1.bd.f 4 380.v even 12 2
3800.1.bd.f 4 760.br odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T71 T_{7} - 1 acting on S1new(3040,[χ])S_{1}^{\mathrm{new}}(3040, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1111 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1313 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
4141 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
5353 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
5959 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less