Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3040,1,Mod(239,3040)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3040, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 3, 4]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3040.239");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3040.cc (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 760) |
Projective image: | |
Projective field: | Galois closure of 3.1.14440.1 |
Artin image: | |
Artin field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
239.1 |
|
0 | 0 | 0 | −0.500000 | + | 0.866025i | 0 | 1.00000 | 0 | −0.500000 | − | 0.866025i | 0 | ||||||||||||||||||||
1679.1 | 0 | 0 | 0 | −0.500000 | − | 0.866025i | 0 | 1.00000 | 0 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
40.e | odd | 2 | 1 | CM by |
19.c | even | 3 | 1 | inner |
760.bm | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3040.1.cc.a | 2 | |
4.b | odd | 2 | 1 | 760.1.bm.a | ✓ | 2 | |
5.b | even | 2 | 1 | 3040.1.cc.b | 2 | ||
8.b | even | 2 | 1 | 760.1.bm.b | yes | 2 | |
8.d | odd | 2 | 1 | 3040.1.cc.b | 2 | ||
19.c | even | 3 | 1 | inner | 3040.1.cc.a | 2 | |
20.d | odd | 2 | 1 | 760.1.bm.b | yes | 2 | |
20.e | even | 4 | 2 | 3800.1.bd.f | 4 | ||
40.e | odd | 2 | 1 | CM | 3040.1.cc.a | 2 | |
40.f | even | 2 | 1 | 760.1.bm.a | ✓ | 2 | |
40.i | odd | 4 | 2 | 3800.1.bd.f | 4 | ||
76.g | odd | 6 | 1 | 760.1.bm.a | ✓ | 2 | |
95.i | even | 6 | 1 | 3040.1.cc.b | 2 | ||
152.k | odd | 6 | 1 | 3040.1.cc.b | 2 | ||
152.p | even | 6 | 1 | 760.1.bm.b | yes | 2 | |
380.p | odd | 6 | 1 | 760.1.bm.b | yes | 2 | |
380.v | even | 12 | 2 | 3800.1.bd.f | 4 | ||
760.z | even | 6 | 1 | 760.1.bm.a | ✓ | 2 | |
760.bm | odd | 6 | 1 | inner | 3040.1.cc.a | 2 | |
760.br | odd | 12 | 2 | 3800.1.bd.f | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
760.1.bm.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
760.1.bm.a | ✓ | 2 | 40.f | even | 2 | 1 | |
760.1.bm.a | ✓ | 2 | 76.g | odd | 6 | 1 | |
760.1.bm.a | ✓ | 2 | 760.z | even | 6 | 1 | |
760.1.bm.b | yes | 2 | 8.b | even | 2 | 1 | |
760.1.bm.b | yes | 2 | 20.d | odd | 2 | 1 | |
760.1.bm.b | yes | 2 | 152.p | even | 6 | 1 | |
760.1.bm.b | yes | 2 | 380.p | odd | 6 | 1 | |
3040.1.cc.a | 2 | 1.a | even | 1 | 1 | trivial | |
3040.1.cc.a | 2 | 19.c | even | 3 | 1 | inner | |
3040.1.cc.a | 2 | 40.e | odd | 2 | 1 | CM | |
3040.1.cc.a | 2 | 760.bm | odd | 6 | 1 | inner | |
3040.1.cc.b | 2 | 5.b | even | 2 | 1 | ||
3040.1.cc.b | 2 | 8.d | odd | 2 | 1 | ||
3040.1.cc.b | 2 | 95.i | even | 6 | 1 | ||
3040.1.cc.b | 2 | 152.k | odd | 6 | 1 | ||
3800.1.bd.f | 4 | 20.e | even | 4 | 2 | ||
3800.1.bd.f | 4 | 40.i | odd | 4 | 2 | ||
3800.1.bd.f | 4 | 380.v | even | 12 | 2 | ||
3800.1.bd.f | 4 | 760.br | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .