L(s) = 1 | − i·9-s + (−1 − i)13-s + (1 − i)17-s + (1 − i)37-s + i·49-s + (1 + i)53-s + (−1 − i)73-s − 81-s + (−1 + i)97-s + 2·101-s − 2i·109-s + (1 + i)113-s + (−1 + i)117-s + ⋯ |
L(s) = 1 | − i·9-s + (−1 − i)13-s + (1 − i)17-s + (1 − i)37-s + i·49-s + (1 + i)53-s + (−1 − i)73-s − 81-s + (−1 + i)97-s + 2·101-s − 2i·109-s + (1 + i)113-s + (−1 + i)117-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.525+0.850i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.525+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.525+0.850i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), 0.525+0.850i)
|
Particular Values
L(21) |
≈ |
1.039512545 |
L(21) |
≈ |
1.039512545 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+iT2 |
| 7 | 1−iT2 |
| 11 | 1+T2 |
| 13 | 1+(1+i)T+iT2 |
| 17 | 1+(−1+i)T−iT2 |
| 19 | 1−T2 |
| 23 | 1+iT2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1+(−1+i)T−iT2 |
| 41 | 1+T2 |
| 43 | 1+iT2 |
| 47 | 1−iT2 |
| 53 | 1+(−1−i)T+iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+(1+i)T+iT2 |
| 79 | 1−T2 |
| 83 | 1+iT2 |
| 89 | 1−T2 |
| 97 | 1+(1−i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.548399693725478716586461596171, −8.798436193317607234406669320793, −7.66579803539722451925421093393, −7.29226262087773670281017124505, −6.13321397127507000793770628340, −5.44700313966039662178670357305, −4.48220157498074805728549511348, −3.36643280550921688563021665879, −2.58330657180352164610614307723, −0.860198330781881761685279441821,
1.66118871882881372317107720211, 2.64759275157110111882515957514, 3.90170104291048891170229486744, 4.78836929313519103417948617163, 5.56364618365182883556818772206, 6.56712806286335577060941872781, 7.41883908849089870645206731706, 8.091247731466074846928739283111, 8.876564417090761194257583351309, 9.961734970081460408075153894472