L(s) = 1 | − i·9-s + (−1 − i)13-s + (1 − i)17-s + (1 − i)37-s + i·49-s + (1 + i)53-s + (−1 − i)73-s − 81-s + (−1 + i)97-s + 2·101-s − 2i·109-s + (1 + i)113-s + (−1 + i)117-s + ⋯ |
L(s) = 1 | − i·9-s + (−1 − i)13-s + (1 − i)17-s + (1 − i)37-s + i·49-s + (1 + i)53-s + (−1 − i)73-s − 81-s + (−1 + i)97-s + 2·101-s − 2i·109-s + (1 + i)113-s + (−1 + i)117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.039512545\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.039512545\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1 - i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.548399693725478716586461596171, −8.798436193317607234406669320793, −7.66579803539722451925421093393, −7.29226262087773670281017124505, −6.13321397127507000793770628340, −5.44700313966039662178670357305, −4.48220157498074805728549511348, −3.36643280550921688563021665879, −2.58330657180352164610614307723, −0.860198330781881761685279441821,
1.66118871882881372317107720211, 2.64759275157110111882515957514, 3.90170104291048891170229486744, 4.78836929313519103417948617163, 5.56364618365182883556818772206, 6.56712806286335577060941872781, 7.41883908849089870645206731706, 8.091247731466074846928739283111, 8.876564417090761194257583351309, 9.961734970081460408075153894472