Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1600,1,Mod(193,1600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 3]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1600.193");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1600.p (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 160) |
Projective image: | |
Projective field: | Galois closure of 4.2.2000.1 |
Artin image: | |
Artin field: | Galois closure of 8.0.32768000.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
5.c | odd | 4 | 1 | inner |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1600.1.p.b | 2 | |
4.b | odd | 2 | 1 | CM | 1600.1.p.b | 2 | |
5.b | even | 2 | 1 | 320.1.p.a | 2 | ||
5.c | odd | 4 | 1 | 320.1.p.a | 2 | ||
5.c | odd | 4 | 1 | inner | 1600.1.p.b | 2 | |
8.b | even | 2 | 1 | 800.1.p.b | 2 | ||
8.d | odd | 2 | 1 | 800.1.p.b | 2 | ||
15.d | odd | 2 | 1 | 2880.1.bh.b | 2 | ||
15.e | even | 4 | 1 | 2880.1.bh.b | 2 | ||
20.d | odd | 2 | 1 | 320.1.p.a | 2 | ||
20.e | even | 4 | 1 | 320.1.p.a | 2 | ||
20.e | even | 4 | 1 | inner | 1600.1.p.b | 2 | |
40.e | odd | 2 | 1 | 160.1.p.a | ✓ | 2 | |
40.f | even | 2 | 1 | 160.1.p.a | ✓ | 2 | |
40.i | odd | 4 | 1 | 160.1.p.a | ✓ | 2 | |
40.i | odd | 4 | 1 | 800.1.p.b | 2 | ||
40.k | even | 4 | 1 | 160.1.p.a | ✓ | 2 | |
40.k | even | 4 | 1 | 800.1.p.b | 2 | ||
60.h | even | 2 | 1 | 2880.1.bh.b | 2 | ||
60.l | odd | 4 | 1 | 2880.1.bh.b | 2 | ||
80.i | odd | 4 | 1 | 1280.1.m.b | 2 | ||
80.j | even | 4 | 1 | 1280.1.m.a | 2 | ||
80.k | odd | 4 | 1 | 1280.1.m.a | 2 | ||
80.k | odd | 4 | 1 | 1280.1.m.b | 2 | ||
80.q | even | 4 | 1 | 1280.1.m.a | 2 | ||
80.q | even | 4 | 1 | 1280.1.m.b | 2 | ||
80.s | even | 4 | 1 | 1280.1.m.b | 2 | ||
80.t | odd | 4 | 1 | 1280.1.m.a | 2 | ||
120.i | odd | 2 | 1 | 1440.1.bh.b | 2 | ||
120.m | even | 2 | 1 | 1440.1.bh.b | 2 | ||
120.q | odd | 4 | 1 | 1440.1.bh.b | 2 | ||
120.w | even | 4 | 1 | 1440.1.bh.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
160.1.p.a | ✓ | 2 | 40.e | odd | 2 | 1 | |
160.1.p.a | ✓ | 2 | 40.f | even | 2 | 1 | |
160.1.p.a | ✓ | 2 | 40.i | odd | 4 | 1 | |
160.1.p.a | ✓ | 2 | 40.k | even | 4 | 1 | |
320.1.p.a | 2 | 5.b | even | 2 | 1 | ||
320.1.p.a | 2 | 5.c | odd | 4 | 1 | ||
320.1.p.a | 2 | 20.d | odd | 2 | 1 | ||
320.1.p.a | 2 | 20.e | even | 4 | 1 | ||
800.1.p.b | 2 | 8.b | even | 2 | 1 | ||
800.1.p.b | 2 | 8.d | odd | 2 | 1 | ||
800.1.p.b | 2 | 40.i | odd | 4 | 1 | ||
800.1.p.b | 2 | 40.k | even | 4 | 1 | ||
1280.1.m.a | 2 | 80.j | even | 4 | 1 | ||
1280.1.m.a | 2 | 80.k | odd | 4 | 1 | ||
1280.1.m.a | 2 | 80.q | even | 4 | 1 | ||
1280.1.m.a | 2 | 80.t | odd | 4 | 1 | ||
1280.1.m.b | 2 | 80.i | odd | 4 | 1 | ||
1280.1.m.b | 2 | 80.k | odd | 4 | 1 | ||
1280.1.m.b | 2 | 80.q | even | 4 | 1 | ||
1280.1.m.b | 2 | 80.s | even | 4 | 1 | ||
1440.1.bh.b | 2 | 120.i | odd | 2 | 1 | ||
1440.1.bh.b | 2 | 120.m | even | 2 | 1 | ||
1440.1.bh.b | 2 | 120.q | odd | 4 | 1 | ||
1440.1.bh.b | 2 | 120.w | even | 4 | 1 | ||
1600.1.p.b | 2 | 1.a | even | 1 | 1 | trivial | |
1600.1.p.b | 2 | 4.b | odd | 2 | 1 | CM | |
1600.1.p.b | 2 | 5.c | odd | 4 | 1 | inner | |
1600.1.p.b | 2 | 20.e | even | 4 | 1 | inner | |
2880.1.bh.b | 2 | 15.d | odd | 2 | 1 | ||
2880.1.bh.b | 2 | 15.e | even | 4 | 1 | ||
2880.1.bh.b | 2 | 60.h | even | 2 | 1 | ||
2880.1.bh.b | 2 | 60.l | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .