L(s) = 1 | + 9-s + 13-s − 2·17-s + 25-s + 2·29-s − 49-s − 2·53-s − 2·61-s + 81-s − 2·101-s − 2·113-s + 117-s + ⋯ |
L(s) = 1 | + 9-s + 13-s − 2·17-s + 25-s + 2·29-s − 49-s − 2·53-s − 2·61-s + 81-s − 2·101-s − 2·113-s + 117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.054208564\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.054208564\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( ( 1 + T )^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61272988492612035472853133947, −9.511338464276738053917750322625, −8.762092450649959004989646937029, −7.958285701860560209257731672154, −6.71609034750672152948793715800, −6.40641510857905777119226283577, −4.85192577951185885970913869999, −4.23360727930307929297987245171, −2.91572923999098473238753973839, −1.49651234364975275124565400998,
1.49651234364975275124565400998, 2.91572923999098473238753973839, 4.23360727930307929297987245171, 4.85192577951185885970913869999, 6.40641510857905777119226283577, 6.71609034750672152948793715800, 7.958285701860560209257731672154, 8.762092450649959004989646937029, 9.511338464276738053917750322625, 10.61272988492612035472853133947