Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(832\)\(\medspace = 2^{6} \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.3328.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.52.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{13})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 4x^{2} + 13 \) . |
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 3 + 20\cdot 29 + 16\cdot 29^{2} + 12\cdot 29^{3} + 3\cdot 29^{4} +O(29^{5})\) |
$r_{ 2 }$ | $=$ | \( 13 + 13\cdot 29 + 24\cdot 29^{2} + 6\cdot 29^{3} + 20\cdot 29^{4} +O(29^{5})\) |
$r_{ 3 }$ | $=$ | \( 16 + 15\cdot 29 + 4\cdot 29^{2} + 22\cdot 29^{3} + 8\cdot 29^{4} +O(29^{5})\) |
$r_{ 4 }$ | $=$ | \( 26 + 8\cdot 29 + 12\cdot 29^{2} + 16\cdot 29^{3} + 25\cdot 29^{4} +O(29^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ | |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$2$ | $2$ | $(1,4)$ | $0$ | |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |