L(s) = 1 | − 16·2-s + 46·3-s + 256·4-s − 625·5-s − 736·6-s − 1.03e4·7-s − 4.09e3·8-s − 1.75e4·9-s + 1.00e4·10-s − 5.56e3·11-s + 1.17e4·12-s + 4.59e4·13-s + 1.65e5·14-s − 2.87e4·15-s + 6.55e4·16-s − 3.81e5·17-s + 2.81e5·18-s + 6.10e5·19-s − 1.60e5·20-s − 4.74e5·21-s + 8.90e4·22-s − 1.44e6·23-s − 1.88e5·24-s + 3.90e5·25-s − 7.35e5·26-s − 1.71e6·27-s − 2.64e6·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.327·3-s + 1/2·4-s − 0.447·5-s − 0.231·6-s − 1.62·7-s − 0.353·8-s − 0.892·9-s + 0.316·10-s − 0.114·11-s + 0.163·12-s + 0.446·13-s + 1.14·14-s − 0.146·15-s + 1/4·16-s − 1.10·17-s + 0.631·18-s + 1.07·19-s − 0.223·20-s − 0.532·21-s + 0.0810·22-s − 1.07·23-s − 0.115·24-s + 1/5·25-s − 0.315·26-s − 0.620·27-s − 0.812·28-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)−Λ(10−s)
Λ(s)=(=(10s/2ΓC(s+9/2)L(s)−Λ(1−s)
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p4T |
| 5 | 1+p4T |
good | 3 | 1−46T+p9T2 |
| 7 | 1+1474pT+p9T2 |
| 11 | 1+5568T+p9T2 |
| 13 | 1−45986T+p9T2 |
| 17 | 1+381318T+p9T2 |
| 19 | 1−610460T+p9T2 |
| 23 | 1+1447914T+p9T2 |
| 29 | 1−5385510T+p9T2 |
| 31 | 1−3053852T+p9T2 |
| 37 | 1−12889442T+p9T2 |
| 41 | 1+33786618T+p9T2 |
| 43 | 1+36886234T+p9T2 |
| 47 | 1+44163798T+p9T2 |
| 53 | 1−29746266T+p9T2 |
| 59 | 1+65575380T+p9T2 |
| 61 | 1−40183202T+p9T2 |
| 67 | 1+115706158T+p9T2 |
| 71 | 1+231681708T+p9T2 |
| 73 | 1−358691906T+p9T2 |
| 79 | 1+486017080T+p9T2 |
| 83 | 1−251168886T+p9T2 |
| 89 | 1+526039110T+p9T2 |
| 97 | 1+1075981438T+p9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.17674770234109574340073195289, −16.49760346673342694979299488176, −15.51869766232036129089545281682, −13.52884631526750982706488792743, −11.75007066646563119595358566331, −9.904625620639392787109259989547, −8.445358808011349762724740333691, −6.48036026027725390451528005228, −3.09665967626266841373478259759, 0,
3.09665967626266841373478259759, 6.48036026027725390451528005228, 8.445358808011349762724740333691, 9.904625620639392787109259989547, 11.75007066646563119595358566331, 13.52884631526750982706488792743, 15.51869766232036129089545281682, 16.49760346673342694979299488176, 18.17674770234109574340073195289