Properties

Label 2-10-1.1-c9-0-2
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $5.15035$
Root an. cond. $2.26944$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 46·3-s + 256·4-s − 625·5-s − 736·6-s − 1.03e4·7-s − 4.09e3·8-s − 1.75e4·9-s + 1.00e4·10-s − 5.56e3·11-s + 1.17e4·12-s + 4.59e4·13-s + 1.65e5·14-s − 2.87e4·15-s + 6.55e4·16-s − 3.81e5·17-s + 2.81e5·18-s + 6.10e5·19-s − 1.60e5·20-s − 4.74e5·21-s + 8.90e4·22-s − 1.44e6·23-s − 1.88e5·24-s + 3.90e5·25-s − 7.35e5·26-s − 1.71e6·27-s − 2.64e6·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.327·3-s + 1/2·4-s − 0.447·5-s − 0.231·6-s − 1.62·7-s − 0.353·8-s − 0.892·9-s + 0.316·10-s − 0.114·11-s + 0.163·12-s + 0.446·13-s + 1.14·14-s − 0.146·15-s + 1/4·16-s − 1.10·17-s + 0.631·18-s + 1.07·19-s − 0.223·20-s − 0.532·21-s + 0.0810·22-s − 1.07·23-s − 0.115·24-s + 1/5·25-s − 0.315·26-s − 0.620·27-s − 0.812·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(5.15035\)
Root analytic conductor: \(2.26944\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{4} T \)
5 \( 1 + p^{4} T \)
good3 \( 1 - 46 T + p^{9} T^{2} \)
7 \( 1 + 1474 p T + p^{9} T^{2} \)
11 \( 1 + 5568 T + p^{9} T^{2} \)
13 \( 1 - 45986 T + p^{9} T^{2} \)
17 \( 1 + 381318 T + p^{9} T^{2} \)
19 \( 1 - 610460 T + p^{9} T^{2} \)
23 \( 1 + 1447914 T + p^{9} T^{2} \)
29 \( 1 - 5385510 T + p^{9} T^{2} \)
31 \( 1 - 3053852 T + p^{9} T^{2} \)
37 \( 1 - 12889442 T + p^{9} T^{2} \)
41 \( 1 + 33786618 T + p^{9} T^{2} \)
43 \( 1 + 36886234 T + p^{9} T^{2} \)
47 \( 1 + 44163798 T + p^{9} T^{2} \)
53 \( 1 - 29746266 T + p^{9} T^{2} \)
59 \( 1 + 65575380 T + p^{9} T^{2} \)
61 \( 1 - 40183202 T + p^{9} T^{2} \)
67 \( 1 + 115706158 T + p^{9} T^{2} \)
71 \( 1 + 231681708 T + p^{9} T^{2} \)
73 \( 1 - 358691906 T + p^{9} T^{2} \)
79 \( 1 + 486017080 T + p^{9} T^{2} \)
83 \( 1 - 251168886 T + p^{9} T^{2} \)
89 \( 1 + 526039110 T + p^{9} T^{2} \)
97 \( 1 + 1075981438 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.17674770234109574340073195289, −16.49760346673342694979299488176, −15.51869766232036129089545281682, −13.52884631526750982706488792743, −11.75007066646563119595358566331, −9.904625620639392787109259989547, −8.445358808011349762724740333691, −6.48036026027725390451528005228, −3.09665967626266841373478259759, 0, 3.09665967626266841373478259759, 6.48036026027725390451528005228, 8.445358808011349762724740333691, 9.904625620639392787109259989547, 11.75007066646563119595358566331, 13.52884631526750982706488792743, 15.51869766232036129089545281682, 16.49760346673342694979299488176, 18.17674770234109574340073195289

Graph of the $Z$-function along the critical line