L(s) = 1 | + (−2 − 2i)2-s + (9 − 9i)3-s + 8i·4-s + (−15 + 20i)5-s − 36·6-s + (29 + 29i)7-s + (16 − 16i)8-s − 81i·9-s + (70 − 10i)10-s − 118·11-s + (72 + 72i)12-s + (69 − 69i)13-s − 116i·14-s + (45 + 315i)15-s − 64·16-s + (−271 − 271i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (1 − i)3-s + 0.5i·4-s + (−0.599 + 0.800i)5-s − 6-s + (0.591 + 0.591i)7-s + (0.250 − 0.250i)8-s − i·9-s + (0.700 − 0.100i)10-s − 0.975·11-s + (0.5 + 0.5i)12-s + (0.408 − 0.408i)13-s − 0.591i·14-s + (0.200 + 1.39i)15-s − 0.250·16-s + (−0.937 − 0.937i)17-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)(0.640+0.767i)Λ(5−s)
Λ(s)=(=(10s/2ΓC(s+2)L(s)(0.640+0.767i)Λ(1−s)
Degree: |
2 |
Conductor: |
10
= 2⋅5
|
Sign: |
0.640+0.767i
|
Analytic conductor: |
1.03369 |
Root analytic conductor: |
1.01671 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ10(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 10, ( :2), 0.640+0.767i)
|
Particular Values
L(25) |
≈ |
0.905951−0.423920i |
L(21) |
≈ |
0.905951−0.423920i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2+2i)T |
| 5 | 1+(15−20i)T |
good | 3 | 1+(−9+9i)T−81iT2 |
| 7 | 1+(−29−29i)T+2.40e3iT2 |
| 11 | 1+118T+1.46e4T2 |
| 13 | 1+(−69+69i)T−2.85e4iT2 |
| 17 | 1+(271+271i)T+8.35e4iT2 |
| 19 | 1−280iT−1.30e5T2 |
| 23 | 1+(−269+269i)T−2.79e5iT2 |
| 29 | 1−680iT−7.07e5T2 |
| 31 | 1−202T+9.23e5T2 |
| 37 | 1+(651+651i)T+1.87e6iT2 |
| 41 | 1−1.68e3T+2.82e6T2 |
| 43 | 1+(−1.08e3+1.08e3i)T−3.41e6iT2 |
| 47 | 1+(−1.26e3−1.26e3i)T+4.87e6iT2 |
| 53 | 1+(611−611i)T−7.89e6iT2 |
| 59 | 1−1.16e3iT−1.21e7T2 |
| 61 | 1+5.59e3T+1.38e7T2 |
| 67 | 1+(751+751i)T+2.01e7iT2 |
| 71 | 1−6.44e3T+2.54e7T2 |
| 73 | 1+(2.95e3−2.95e3i)T−2.83e7iT2 |
| 79 | 1−1.05e4iT−3.89e7T2 |
| 83 | 1+(6.23e3−6.23e3i)T−4.74e7iT2 |
| 89 | 1+1.44e4iT−6.27e7T2 |
| 97 | 1+(7.31e3+7.31e3i)T+8.85e7iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.83766310813537809024435622667, −18.57683806843483705103387378519, −18.17528192393846041571962560345, −15.58359723051238049094321415300, −14.09689758628053902298710611143, −12.56296324811360941388841825951, −10.92683241127515175220492978638, −8.576419223140330273316556010163, −7.41236298354186449641074172392, −2.63299884198847838915051193532,
4.46846646297317084744423291953, 7.961397833103900235480438224705, 9.104051683033048217187035624946, 10.84596160869241973199237549649, 13.50900885747239028179362041665, 15.14653380220326052994219103775, 15.92584702397339250974258949644, 17.39657263892531068990599874961, 19.37004415030012598391470815480, 20.40927505534607014480708864434