L(s) = 1 | + (−8 + 8i)2-s + (52.9 + 52.9i)3-s − 128i·4-s + (−490. + 387. i)5-s − 847.·6-s + (−2.62e3 + 2.62e3i)7-s + (1.02e3 + 1.02e3i)8-s − 953. i·9-s + (822. − 7.02e3i)10-s + 5.37e3·11-s + (6.77e3 − 6.77e3i)12-s + (2.79e4 + 2.79e4i)13-s − 4.19e4i·14-s + (−4.64e4 − 5.44e3i)15-s − 1.63e4·16-s + (5.34e4 − 5.34e4i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.653 + 0.653i)3-s − 0.5i·4-s + (−0.784 + 0.620i)5-s − 0.653·6-s + (−1.09 + 1.09i)7-s + (0.250 + 0.250i)8-s − 0.145i·9-s + (0.0822 − 0.702i)10-s + 0.366·11-s + (0.326 − 0.326i)12-s + (0.979 + 0.979i)13-s − 1.09i·14-s + (−0.918 − 0.107i)15-s − 0.250·16-s + (0.639 − 0.639i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.783 - 0.621i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.783 - 0.621i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.334505 + 0.960670i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.334505 + 0.960670i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (8 - 8i)T \) |
| 5 | \( 1 + (490. - 387. i)T \) |
good | 3 | \( 1 + (-52.9 - 52.9i)T + 6.56e3iT^{2} \) |
| 7 | \( 1 + (2.62e3 - 2.62e3i)T - 5.76e6iT^{2} \) |
| 11 | \( 1 - 5.37e3T + 2.14e8T^{2} \) |
| 13 | \( 1 + (-2.79e4 - 2.79e4i)T + 8.15e8iT^{2} \) |
| 17 | \( 1 + (-5.34e4 + 5.34e4i)T - 6.97e9iT^{2} \) |
| 19 | \( 1 - 1.44e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 + (-5.21e4 - 5.21e4i)T + 7.83e10iT^{2} \) |
| 29 | \( 1 - 4.17e4iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 2.44e5T + 8.52e11T^{2} \) |
| 37 | \( 1 + (2.00e6 - 2.00e6i)T - 3.51e12iT^{2} \) |
| 41 | \( 1 + 4.17e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + (-4.01e6 - 4.01e6i)T + 1.16e13iT^{2} \) |
| 47 | \( 1 + (-2.26e6 + 2.26e6i)T - 2.38e13iT^{2} \) |
| 53 | \( 1 + (3.72e6 + 3.72e6i)T + 6.22e13iT^{2} \) |
| 59 | \( 1 + 1.12e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 2.02e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (1.30e7 - 1.30e7i)T - 4.06e14iT^{2} \) |
| 71 | \( 1 - 2.61e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + (1.85e7 + 1.85e7i)T + 8.06e14iT^{2} \) |
| 79 | \( 1 - 3.07e6iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (-2.41e7 - 2.41e7i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 + 5.76e6iT - 3.93e15T^{2} \) |
| 97 | \( 1 + (-2.86e7 + 2.86e7i)T - 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.22039782453345498122489228997, −18.55225175777111055126870650811, −16.25195716448355735395762076240, −15.49118348210720808768659522907, −14.30501672796265016763968391433, −11.88678472185384620331631544692, −9.815915125807387521427744484699, −8.610619082343812331927088025774, −6.47798515963746562097895777788, −3.43396587058692779369520740118,
0.801098543784933523304306953121, 3.52661646363352644481874717553, 7.31654700935727973072703631691, 8.687319578953972657443850994476, 10.62947254230871342329311705112, 12.62228437719150411911918321604, 13.54302968260372092947213546653, 15.85370592360411122446267774804, 17.13582691403347046369645163075, 19.01291095096740593356407572430