L(s) = 1 | + (−8 + 8i)2-s + (52.9 + 52.9i)3-s − 128i·4-s + (−490. + 387. i)5-s − 847.·6-s + (−2.62e3 + 2.62e3i)7-s + (1.02e3 + 1.02e3i)8-s − 953. i·9-s + (822. − 7.02e3i)10-s + 5.37e3·11-s + (6.77e3 − 6.77e3i)12-s + (2.79e4 + 2.79e4i)13-s − 4.19e4i·14-s + (−4.64e4 − 5.44e3i)15-s − 1.63e4·16-s + (5.34e4 − 5.34e4i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.653 + 0.653i)3-s − 0.5i·4-s + (−0.784 + 0.620i)5-s − 0.653·6-s + (−1.09 + 1.09i)7-s + (0.250 + 0.250i)8-s − 0.145i·9-s + (0.0822 − 0.702i)10-s + 0.366·11-s + (0.326 − 0.326i)12-s + (0.979 + 0.979i)13-s − 1.09i·14-s + (−0.918 − 0.107i)15-s − 0.250·16-s + (0.639 − 0.639i)17-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)(−0.783−0.621i)Λ(9−s)
Λ(s)=(=(10s/2ΓC(s+4)L(s)(−0.783−0.621i)Λ(1−s)
Degree: |
2 |
Conductor: |
10
= 2⋅5
|
Sign: |
−0.783−0.621i
|
Analytic conductor: |
4.07378 |
Root analytic conductor: |
2.01836 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ10(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 10, ( :4), −0.783−0.621i)
|
Particular Values
L(29) |
≈ |
0.334505+0.960670i |
L(21) |
≈ |
0.334505+0.960670i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(8−8i)T |
| 5 | 1+(490.−387.i)T |
good | 3 | 1+(−52.9−52.9i)T+6.56e3iT2 |
| 7 | 1+(2.62e3−2.62e3i)T−5.76e6iT2 |
| 11 | 1−5.37e3T+2.14e8T2 |
| 13 | 1+(−2.79e4−2.79e4i)T+8.15e8iT2 |
| 17 | 1+(−5.34e4+5.34e4i)T−6.97e9iT2 |
| 19 | 1−1.44e5iT−1.69e10T2 |
| 23 | 1+(−5.21e4−5.21e4i)T+7.83e10iT2 |
| 29 | 1−4.17e4iT−5.00e11T2 |
| 31 | 1−2.44e5T+8.52e11T2 |
| 37 | 1+(2.00e6−2.00e6i)T−3.51e12iT2 |
| 41 | 1+4.17e6T+7.98e12T2 |
| 43 | 1+(−4.01e6−4.01e6i)T+1.16e13iT2 |
| 47 | 1+(−2.26e6+2.26e6i)T−2.38e13iT2 |
| 53 | 1+(3.72e6+3.72e6i)T+6.22e13iT2 |
| 59 | 1+1.12e7iT−1.46e14T2 |
| 61 | 1−2.02e7T+1.91e14T2 |
| 67 | 1+(1.30e7−1.30e7i)T−4.06e14iT2 |
| 71 | 1−2.61e7T+6.45e14T2 |
| 73 | 1+(1.85e7+1.85e7i)T+8.06e14iT2 |
| 79 | 1−3.07e6iT−1.51e15T2 |
| 83 | 1+(−2.41e7−2.41e7i)T+2.25e15iT2 |
| 89 | 1+5.76e6iT−3.93e15T2 |
| 97 | 1+(−2.86e7+2.86e7i)T−7.83e15iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.22039782453345498122489228997, −18.55225175777111055126870650811, −16.25195716448355735395762076240, −15.49118348210720808768659522907, −14.30501672796265016763968391433, −11.88678472185384620331631544692, −9.815915125807387521427744484699, −8.610619082343812331927088025774, −6.47798515963746562097895777788, −3.43396587058692779369520740118,
0.801098543784933523304306953121, 3.52661646363352644481874717553, 7.31654700935727973072703631691, 8.687319578953972657443850994476, 10.62947254230871342329311705112, 12.62228437719150411911918321604, 13.54302968260372092947213546653, 15.85370592360411122446267774804, 17.13582691403347046369645163075, 19.01291095096740593356407572430