L(s) = 1 | + (8 − 8i)2-s + (82.7 + 82.7i)3-s − 128i·4-s + (−33.6 + 624. i)5-s + 1.32e3·6-s + (2.71e3 − 2.71e3i)7-s + (−1.02e3 − 1.02e3i)8-s + 7.14e3i·9-s + (4.72e3 + 5.26e3i)10-s − 2.09e4·11-s + (1.05e4 − 1.05e4i)12-s + (−8.09e3 − 8.09e3i)13-s − 4.34e4i·14-s + (−5.44e4 + 4.88e4i)15-s − 1.63e4·16-s + (−3.14e3 + 3.14e3i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (1.02 + 1.02i)3-s − 0.5i·4-s + (−0.0538 + 0.998i)5-s + 1.02·6-s + (1.13 − 1.13i)7-s + (−0.250 − 0.250i)8-s + 1.08i·9-s + (0.472 + 0.526i)10-s − 1.43·11-s + (0.511 − 0.511i)12-s + (−0.283 − 0.283i)13-s − 1.13i·14-s + (−1.07 + 0.965i)15-s − 0.250·16-s + (−0.0376 + 0.0376i)17-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)(0.984−0.177i)Λ(9−s)
Λ(s)=(=(10s/2ΓC(s+4)L(s)(0.984−0.177i)Λ(1−s)
Degree: |
2 |
Conductor: |
10
= 2⋅5
|
Sign: |
0.984−0.177i
|
Analytic conductor: |
4.07378 |
Root analytic conductor: |
2.01836 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ10(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 10, ( :4), 0.984−0.177i)
|
Particular Values
L(29) |
≈ |
2.43627+0.217379i |
L(21) |
≈ |
2.43627+0.217379i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−8+8i)T |
| 5 | 1+(33.6−624.i)T |
good | 3 | 1+(−82.7−82.7i)T+6.56e3iT2 |
| 7 | 1+(−2.71e3+2.71e3i)T−5.76e6iT2 |
| 11 | 1+2.09e4T+2.14e8T2 |
| 13 | 1+(8.09e3+8.09e3i)T+8.15e8iT2 |
| 17 | 1+(3.14e3−3.14e3i)T−6.97e9iT2 |
| 19 | 1+6.92e4iT−1.69e10T2 |
| 23 | 1+(−1.08e3−1.08e3i)T+7.83e10iT2 |
| 29 | 1+1.20e5iT−5.00e11T2 |
| 31 | 1−8.26e5T+8.52e11T2 |
| 37 | 1+(1.17e6−1.17e6i)T−3.51e12iT2 |
| 41 | 1−1.74e6T+7.98e12T2 |
| 43 | 1+(−3.03e6−3.03e6i)T+1.16e13iT2 |
| 47 | 1+(5.83e6−5.83e6i)T−2.38e13iT2 |
| 53 | 1+(−1.97e6−1.97e6i)T+6.22e13iT2 |
| 59 | 1−1.58e7iT−1.46e14T2 |
| 61 | 1+2.51e6T+1.91e14T2 |
| 67 | 1+(−1.47e7+1.47e7i)T−4.06e14iT2 |
| 71 | 1+8.22e6T+6.45e14T2 |
| 73 | 1+(3.03e7+3.03e7i)T+8.06e14iT2 |
| 79 | 1−4.69e7iT−1.51e15T2 |
| 83 | 1+(−2.81e7−2.81e7i)T+2.25e15iT2 |
| 89 | 1+7.91e7iT−3.93e15T2 |
| 97 | 1+(−1.47e6+1.47e6i)T−7.83e15iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.54042629232839871684162640187, −17.85750253085818060856408635700, −15.58624105706325791902748358787, −14.58615806482881108838494555425, −13.62620102160974074703749549077, −10.97466073515949477971240202201, −10.12407096360998248948078790266, −7.81725539377555679860902636651, −4.53669008119461396286520916113, −2.84166717444066003911303309946,
2.16456074157436581167961862165, 5.22986146145030304615417834263, 7.81246732371750747120041890220, 8.648420345736611399246963327099, 12.09895903757120815560541844909, 13.16067869683265866034452964177, 14.46442209357481424235818528492, 15.79063758485814265398196514834, 17.74287176166650237656429495845, 18.90421261364371334819173431548