L(s) = 1 | + (−8 + 8i)2-s + (−25.9 − 25.9i)3-s − 128i·4-s + (535. − 322. i)5-s + 415.·6-s + (2.03e3 − 2.03e3i)7-s + (1.02e3 + 1.02e3i)8-s − 5.21e3i·9-s + (−1.70e3 + 6.86e3i)10-s − 1.52e4·11-s + (−3.32e3 + 3.32e3i)12-s + (8.87e3 + 8.87e3i)13-s + 3.24e4i·14-s + (−2.22e4 − 5.52e3i)15-s − 1.63e4·16-s + (4.60e4 − 4.60e4i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (−0.320 − 0.320i)3-s − 0.5i·4-s + (0.856 − 0.516i)5-s + 0.320·6-s + (0.845 − 0.845i)7-s + (0.250 + 0.250i)8-s − 0.794i·9-s + (−0.170 + 0.686i)10-s − 1.04·11-s + (−0.160 + 0.160i)12-s + (0.310 + 0.310i)13-s + 0.845i·14-s + (−0.439 − 0.109i)15-s − 0.250·16-s + (0.551 − 0.551i)17-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)(0.699+0.715i)Λ(9−s)
Λ(s)=(=(10s/2ΓC(s+4)L(s)(0.699+0.715i)Λ(1−s)
Degree: |
2 |
Conductor: |
10
= 2⋅5
|
Sign: |
0.699+0.715i
|
Analytic conductor: |
4.07378 |
Root analytic conductor: |
2.01836 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ10(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 10, ( :4), 0.699+0.715i)
|
Particular Values
L(29) |
≈ |
1.08087−0.454895i |
L(21) |
≈ |
1.08087−0.454895i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(8−8i)T |
| 5 | 1+(−535.+322.i)T |
good | 3 | 1+(25.9+25.9i)T+6.56e3iT2 |
| 7 | 1+(−2.03e3+2.03e3i)T−5.76e6iT2 |
| 11 | 1+1.52e4T+2.14e8T2 |
| 13 | 1+(−8.87e3−8.87e3i)T+8.15e8iT2 |
| 17 | 1+(−4.60e4+4.60e4i)T−6.97e9iT2 |
| 19 | 1+7.32e4iT−1.69e10T2 |
| 23 | 1+(−2.63e5−2.63e5i)T+7.83e10iT2 |
| 29 | 1−1.20e6iT−5.00e11T2 |
| 31 | 1+1.40e6T+8.52e11T2 |
| 37 | 1+(−1.51e6+1.51e6i)T−3.51e12iT2 |
| 41 | 1−2.03e6T+7.98e12T2 |
| 43 | 1+(4.41e5+4.41e5i)T+1.16e13iT2 |
| 47 | 1+(3.91e6−3.91e6i)T−2.38e13iT2 |
| 53 | 1+(−8.72e6−8.72e6i)T+6.22e13iT2 |
| 59 | 1+4.77e6iT−1.46e14T2 |
| 61 | 1−2.24e7T+1.91e14T2 |
| 67 | 1+(1.55e7−1.55e7i)T−4.06e14iT2 |
| 71 | 1−3.03e7T+6.45e14T2 |
| 73 | 1+(1.18e7+1.18e7i)T+8.06e14iT2 |
| 79 | 1+2.53e7iT−1.51e15T2 |
| 83 | 1+(−1.13e7−1.13e7i)T+2.25e15iT2 |
| 89 | 1−1.02e7iT−3.93e15T2 |
| 97 | 1+(−4.11e7+4.11e7i)T−7.83e15iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.26956493250383704184179346780, −17.57676066475171979043589777511, −16.34558823557599653074846658234, −14.48880283528666747278736147216, −13.05163793567470218738733518796, −10.94366761240132015743559132895, −9.209487462885946197681305327800, −7.29154380092448956159123600654, −5.34262322075842697755823825540, −1.09122246047220759063044200525,
2.25191905571300630546010570399, 5.45269018885786286140952283594, 8.154952320465890285594692637568, 10.12109764209585831458647257869, 11.19450287195086172685431149576, 13.11309136458685725931638834512, 14.91159500540444449651290469259, 16.66697653822403080057316495135, 18.02987507352447478999831013558, 18.85516239329005465625546631500