L(s) = 1 | + (8 − 8i)2-s + (−39.7 − 39.7i)3-s − 128i·4-s + (−401. − 479. i)5-s − 636.·6-s + (144. − 144. i)7-s + (−1.02e3 − 1.02e3i)8-s − 3.39e3i·9-s + (−7.04e3 − 621. i)10-s + 1.36e4·11-s + (−5.09e3 + 5.09e3i)12-s + (3.08e4 + 3.08e4i)13-s − 2.31e3i·14-s + (−3.09e3 + 3.50e4i)15-s − 1.63e4·16-s + (4.94e3 − 4.94e3i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (−0.491 − 0.491i)3-s − 0.5i·4-s + (−0.642 − 0.766i)5-s − 0.491·6-s + (0.0601 − 0.0601i)7-s + (−0.250 − 0.250i)8-s − 0.517i·9-s + (−0.704 − 0.0621i)10-s + 0.928·11-s + (−0.245 + 0.245i)12-s + (1.08 + 1.08i)13-s − 0.0601i·14-s + (−0.0610 + 0.691i)15-s − 0.250·16-s + (0.0592 − 0.0592i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.598 + 0.801i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.598 + 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.637158 - 1.27134i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.637158 - 1.27134i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-8 + 8i)T \) |
| 5 | \( 1 + (401. + 479. i)T \) |
good | 3 | \( 1 + (39.7 + 39.7i)T + 6.56e3iT^{2} \) |
| 7 | \( 1 + (-144. + 144. i)T - 5.76e6iT^{2} \) |
| 11 | \( 1 - 1.36e4T + 2.14e8T^{2} \) |
| 13 | \( 1 + (-3.08e4 - 3.08e4i)T + 8.15e8iT^{2} \) |
| 17 | \( 1 + (-4.94e3 + 4.94e3i)T - 6.97e9iT^{2} \) |
| 19 | \( 1 + 1.76e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 + (2.29e5 + 2.29e5i)T + 7.83e10iT^{2} \) |
| 29 | \( 1 + 1.44e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.50e6T + 8.52e11T^{2} \) |
| 37 | \( 1 + (1.60e6 - 1.60e6i)T - 3.51e12iT^{2} \) |
| 41 | \( 1 - 3.62e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + (5.75e5 + 5.75e5i)T + 1.16e13iT^{2} \) |
| 47 | \( 1 + (-3.11e6 + 3.11e6i)T - 2.38e13iT^{2} \) |
| 53 | \( 1 + (-8.16e6 - 8.16e6i)T + 6.22e13iT^{2} \) |
| 59 | \( 1 + 1.54e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 1.92e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (1.00e7 - 1.00e7i)T - 4.06e14iT^{2} \) |
| 71 | \( 1 - 1.84e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + (-2.45e7 - 2.45e7i)T + 8.06e14iT^{2} \) |
| 79 | \( 1 - 2.17e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (-4.00e6 - 4.00e6i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 + 6.14e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 + (-1.55e7 + 1.55e7i)T - 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.74899178375951957395398157140, −17.15867894954235647710490256542, −15.62055112811890342928267547497, −13.78214722041872119100607104873, −12.25550210275362855451451000886, −11.42045660839704419276426396280, −8.986740064601155599554704885513, −6.48503423403572714390838654199, −4.21444491938491545766826703369, −0.986585465502458767950738782641,
3.82020611421012658503321505391, 5.96129765775866742918006259161, 7.946550086625866825545912688134, 10.53718074511801605687081798906, 11.92433843335304081474619900785, 13.92637399069533097122386065109, 15.34134078252824709278946876534, 16.35765836656535190721152744493, 17.88928497174011463984732795914, 19.51173591039567534973928063405