L(s) = 1 | + (8 − 8i)2-s + (−39.7 − 39.7i)3-s − 128i·4-s + (−401. − 479. i)5-s − 636.·6-s + (144. − 144. i)7-s + (−1.02e3 − 1.02e3i)8-s − 3.39e3i·9-s + (−7.04e3 − 621. i)10-s + 1.36e4·11-s + (−5.09e3 + 5.09e3i)12-s + (3.08e4 + 3.08e4i)13-s − 2.31e3i·14-s + (−3.09e3 + 3.50e4i)15-s − 1.63e4·16-s + (4.94e3 − 4.94e3i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (−0.491 − 0.491i)3-s − 0.5i·4-s + (−0.642 − 0.766i)5-s − 0.491·6-s + (0.0601 − 0.0601i)7-s + (−0.250 − 0.250i)8-s − 0.517i·9-s + (−0.704 − 0.0621i)10-s + 0.928·11-s + (−0.245 + 0.245i)12-s + (1.08 + 1.08i)13-s − 0.0601i·14-s + (−0.0610 + 0.691i)15-s − 0.250·16-s + (0.0592 − 0.0592i)17-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)(−0.598+0.801i)Λ(9−s)
Λ(s)=(=(10s/2ΓC(s+4)L(s)(−0.598+0.801i)Λ(1−s)
Degree: |
2 |
Conductor: |
10
= 2⋅5
|
Sign: |
−0.598+0.801i
|
Analytic conductor: |
4.07378 |
Root analytic conductor: |
2.01836 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ10(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 10, ( :4), −0.598+0.801i)
|
Particular Values
L(29) |
≈ |
0.637158−1.27134i |
L(21) |
≈ |
0.637158−1.27134i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−8+8i)T |
| 5 | 1+(401.+479.i)T |
good | 3 | 1+(39.7+39.7i)T+6.56e3iT2 |
| 7 | 1+(−144.+144.i)T−5.76e6iT2 |
| 11 | 1−1.36e4T+2.14e8T2 |
| 13 | 1+(−3.08e4−3.08e4i)T+8.15e8iT2 |
| 17 | 1+(−4.94e3+4.94e3i)T−6.97e9iT2 |
| 19 | 1+1.76e5iT−1.69e10T2 |
| 23 | 1+(2.29e5+2.29e5i)T+7.83e10iT2 |
| 29 | 1+1.44e5iT−5.00e11T2 |
| 31 | 1−1.50e6T+8.52e11T2 |
| 37 | 1+(1.60e6−1.60e6i)T−3.51e12iT2 |
| 41 | 1−3.62e6T+7.98e12T2 |
| 43 | 1+(5.75e5+5.75e5i)T+1.16e13iT2 |
| 47 | 1+(−3.11e6+3.11e6i)T−2.38e13iT2 |
| 53 | 1+(−8.16e6−8.16e6i)T+6.22e13iT2 |
| 59 | 1+1.54e7iT−1.46e14T2 |
| 61 | 1+1.92e7T+1.91e14T2 |
| 67 | 1+(1.00e7−1.00e7i)T−4.06e14iT2 |
| 71 | 1−1.84e7T+6.45e14T2 |
| 73 | 1+(−2.45e7−2.45e7i)T+8.06e14iT2 |
| 79 | 1−2.17e7iT−1.51e15T2 |
| 83 | 1+(−4.00e6−4.00e6i)T+2.25e15iT2 |
| 89 | 1+6.14e7iT−3.93e15T2 |
| 97 | 1+(−1.55e7+1.55e7i)T−7.83e15iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.74899178375951957395398157140, −17.15867894954235647710490256542, −15.62055112811890342928267547497, −13.78214722041872119100607104873, −12.25550210275362855451451000886, −11.42045660839704419276426396280, −8.986740064601155599554704885513, −6.48503423403572714390838654199, −4.21444491938491545766826703369, −0.986585465502458767950738782641,
3.82020611421012658503321505391, 5.96129765775866742918006259161, 7.946550086625866825545912688134, 10.53718074511801605687081798906, 11.92433843335304081474619900785, 13.92637399069533097122386065109, 15.34134078252824709278946876534, 16.35765836656535190721152744493, 17.88928497174011463984732795914, 19.51173591039567534973928063405