L(s) = 1 | + 8i·2-s − 83.6i·3-s − 64·4-s + (237. − 147. i)5-s + 669.·6-s − 185. i·7-s − 512i·8-s − 4.81e3·9-s + (1.17e3 + 1.90e3i)10-s + 3.56e3·11-s + 5.35e3i·12-s + 6.09e3i·13-s + 1.48e3·14-s + (−1.23e4 − 1.98e4i)15-s + 4.09e3·16-s + 1.24e4i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.78i·3-s − 0.5·4-s + (0.850 − 0.526i)5-s + 1.26·6-s − 0.204i·7-s − 0.353i·8-s − 2.20·9-s + (0.371 + 0.601i)10-s + 0.806·11-s + 0.894i·12-s + 0.769i·13-s + 0.144·14-s + (−0.941 − 1.52i)15-s + 0.250·16-s + 0.615i·17-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)(0.526+0.850i)Λ(8−s)
Λ(s)=(=(10s/2ΓC(s+7/2)L(s)(0.526+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
10
= 2⋅5
|
Sign: |
0.526+0.850i
|
Analytic conductor: |
3.12385 |
Root analytic conductor: |
1.76744 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ10(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 10, ( :7/2), 0.526+0.850i)
|
Particular Values
L(4) |
≈ |
1.25469−0.699239i |
L(21) |
≈ |
1.25469−0.699239i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−8iT |
| 5 | 1+(−237.+147.i)T |
good | 3 | 1+83.6iT−2.18e3T2 |
| 7 | 1+185.iT−8.23e5T2 |
| 11 | 1−3.56e3T+1.94e7T2 |
| 13 | 1−6.09e3iT−6.27e7T2 |
| 17 | 1−1.24e4iT−4.10e8T2 |
| 19 | 1−5.06e4T+8.93e8T2 |
| 23 | 1−1.14e4iT−3.40e9T2 |
| 29 | 1+1.01e5T+1.72e10T2 |
| 31 | 1+2.90e4T+2.75e10T2 |
| 37 | 1+1.49e5iT−9.49e10T2 |
| 41 | 1+3.74e5T+1.94e11T2 |
| 43 | 1+1.74e5iT−2.71e11T2 |
| 47 | 1−4.28e5iT−5.06e11T2 |
| 53 | 1−1.71e6iT−1.17e12T2 |
| 59 | 1+1.34e5T+2.48e12T2 |
| 61 | 1+1.39e6T+3.14e12T2 |
| 67 | 1−2.60e6iT−6.06e12T2 |
| 71 | 1+4.91e6T+9.09e12T2 |
| 73 | 1+1.19e5iT−1.10e13T2 |
| 79 | 1−4.70e6T+1.92e13T2 |
| 83 | 1+9.19e6iT−2.71e13T2 |
| 89 | 1+6.43e6T+4.42e13T2 |
| 97 | 1−1.26e7iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.76133535732387945636910078652, −17.65843574979804520094317654841, −16.73536492962310677015722275597, −14.21426954094864078302826728911, −13.40234642670442655734536262262, −12.04272751746887657229160282832, −9.039626562876661235970843121495, −7.30979794387154382333110495472, −5.93088416668753855450962986916, −1.37003475765328559695814707233,
3.25971690423980935490263412487, 5.32554859408978323330465615091, 9.249043236612006197813301497945, 10.14295639502063941940733858177, 11.47773087953961666413120642771, 13.92559472015997342315228999571, 15.13451449272596670963511007349, 16.71289280521128786009242443137, 18.09722229201436429479026567578, 20.08935962370004503624185608059