L(s) = 1 | + 8i·2-s − 83.6i·3-s − 64·4-s + (237. − 147. i)5-s + 669.·6-s − 185. i·7-s − 512i·8-s − 4.81e3·9-s + (1.17e3 + 1.90e3i)10-s + 3.56e3·11-s + 5.35e3i·12-s + 6.09e3i·13-s + 1.48e3·14-s + (−1.23e4 − 1.98e4i)15-s + 4.09e3·16-s + 1.24e4i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.78i·3-s − 0.5·4-s + (0.850 − 0.526i)5-s + 1.26·6-s − 0.204i·7-s − 0.353i·8-s − 2.20·9-s + (0.371 + 0.601i)10-s + 0.806·11-s + 0.894i·12-s + 0.769i·13-s + 0.144·14-s + (−0.941 − 1.52i)15-s + 0.250·16-s + 0.615i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.526 + 0.850i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.526 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.25469 - 0.699239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25469 - 0.699239i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 8iT \) |
| 5 | \( 1 + (-237. + 147. i)T \) |
good | 3 | \( 1 + 83.6iT - 2.18e3T^{2} \) |
| 7 | \( 1 + 185. iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.56e3T + 1.94e7T^{2} \) |
| 13 | \( 1 - 6.09e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 1.24e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 5.06e4T + 8.93e8T^{2} \) |
| 23 | \( 1 - 1.14e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 + 1.01e5T + 1.72e10T^{2} \) |
| 31 | \( 1 + 2.90e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + 1.49e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 3.74e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 1.74e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 4.28e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 1.71e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 1.34e5T + 2.48e12T^{2} \) |
| 61 | \( 1 + 1.39e6T + 3.14e12T^{2} \) |
| 67 | \( 1 - 2.60e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 4.91e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + 1.19e5iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 4.70e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 9.19e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 6.43e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 1.26e7iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.76133535732387945636910078652, −17.65843574979804520094317654841, −16.73536492962310677015722275597, −14.21426954094864078302826728911, −13.40234642670442655734536262262, −12.04272751746887657229160282832, −9.039626562876661235970843121495, −7.30979794387154382333110495472, −5.93088416668753855450962986916, −1.37003475765328559695814707233,
3.25971690423980935490263412487, 5.32554859408978323330465615091, 9.249043236612006197813301497945, 10.14295639502063941940733858177, 11.47773087953961666413120642771, 13.92559472015997342315228999571, 15.13451449272596670963511007349, 16.71289280521128786009242443137, 18.09722229201436429479026567578, 20.08935962370004503624185608059