L(s) = 1 | + (−1.22 − 0.707i)5-s + (−0.5 + 0.866i)7-s + (−1.22 + 0.707i)11-s − 13-s + (−0.5 + 0.866i)19-s + (0.499 + 0.866i)25-s + (−0.5 − 0.866i)31-s + (1.22 − 0.707i)35-s + (−0.5 + 0.866i)37-s + 1.41i·41-s + 43-s + (−1.22 − 0.707i)47-s + (−0.499 − 0.866i)49-s + 2·55-s + (1.22 + 0.707i)65-s + ⋯ |
L(s) = 1 | + (−1.22 − 0.707i)5-s + (−0.5 + 0.866i)7-s + (−1.22 + 0.707i)11-s − 13-s + (−0.5 + 0.866i)19-s + (0.499 + 0.866i)25-s + (−0.5 − 0.866i)31-s + (1.22 − 0.707i)35-s + (−0.5 + 0.866i)37-s + 1.41i·41-s + 43-s + (−1.22 − 0.707i)47-s + (−0.499 − 0.866i)49-s + 2·55-s + (1.22 + 0.707i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.851 - 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.851 - 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2010716655\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2010716655\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - 1.41iT - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35669186959104996696296019564, −9.699129369716018495139620477280, −8.748819019362095814093471854051, −7.950646564031574696113835090835, −7.45994507190752733238767010073, −6.21996387356881684044387915527, −5.13567215735783345855231034502, −4.51154466921230235228734436905, −3.30163356021236317721278618921, −2.16399280714451659372404236865,
0.17505609406316021203943626829, 2.62804268978152513700220461899, 3.44798733023799191231462458514, 4.38463582948927529282666238910, 5.43690806510760131763004472120, 6.75326508655141925745908134009, 7.33139677408003243034124460075, 7.924015944353601385400201802547, 8.931203825246533758155290959458, 10.03503827289418994736538453508