L(s) = 1 | + (1.37 − 0.347i)2-s + (1.75 − 0.952i)4-s + (−0.111 + 0.111i)5-s + 7-s + (2.07 − 1.91i)8-s + (−0.114 + 0.191i)10-s + (3.61 + 3.61i)11-s + (−1.94 + 1.94i)13-s + (1.37 − 0.347i)14-s + (2.18 − 3.35i)16-s − 4.79i·17-s + (3.03 + 3.03i)19-s + (−0.0897 + 0.302i)20-s + (6.20 + 3.69i)22-s − 6.58i·23-s + ⋯ |
L(s) = 1 | + (0.969 − 0.245i)2-s + (0.879 − 0.476i)4-s + (−0.0498 + 0.0498i)5-s + 0.377·7-s + (0.735 − 0.677i)8-s + (−0.0360 + 0.0605i)10-s + (1.08 + 1.08i)11-s + (−0.539 + 0.539i)13-s + (0.366 − 0.0928i)14-s + (0.546 − 0.837i)16-s − 1.16i·17-s + (0.695 + 0.695i)19-s + (−0.0200 + 0.0675i)20-s + (1.32 + 0.788i)22-s − 1.37i·23-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(0.937+0.347i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(0.937+0.347i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
0.937+0.347i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(827,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), 0.937+0.347i)
|
Particular Values
L(1) |
≈ |
3.241542273 |
L(21) |
≈ |
3.241542273 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.37+0.347i)T |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1+(0.111−0.111i)T−5iT2 |
| 11 | 1+(−3.61−3.61i)T+11iT2 |
| 13 | 1+(1.94−1.94i)T−13iT2 |
| 17 | 1+4.79iT−17T2 |
| 19 | 1+(−3.03−3.03i)T+19iT2 |
| 23 | 1+6.58iT−23T2 |
| 29 | 1+(−1.53−1.53i)T+29iT2 |
| 31 | 1+3.26iT−31T2 |
| 37 | 1+(−1.05−1.05i)T+37iT2 |
| 41 | 1+1.26T+41T2 |
| 43 | 1+(−0.484+0.484i)T−43iT2 |
| 47 | 1+11.2T+47T2 |
| 53 | 1+(−4.00+4.00i)T−53iT2 |
| 59 | 1+(7.61+7.61i)T+59iT2 |
| 61 | 1+(−5.44+5.44i)T−61iT2 |
| 67 | 1+(0.897+0.897i)T+67iT2 |
| 71 | 1+2.83iT−71T2 |
| 73 | 1−15.7iT−73T2 |
| 79 | 1−15.4iT−79T2 |
| 83 | 1+(7.57−7.57i)T−83iT2 |
| 89 | 1−13.1T+89T2 |
| 97 | 1+10.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.812507205296599539080500944229, −9.489364273118675161292556915110, −8.067529668863667604215525919610, −7.02847124278632703082117078351, −6.65465539180193336527595129732, −5.31518956503397593764839860770, −4.64618699035593809505245793976, −3.78155629384934498240161703692, −2.53800516235328119932742148681, −1.44791285681641722255307886889,
1.44519168101339132870353666056, 2.94039190550214937527690944843, 3.78942949687504357775809196919, 4.77328732952723708854015733287, 5.73215949074780299190583760278, 6.39326550860314895947563093863, 7.41278466759342619008203020164, 8.184756685403063109394023631639, 9.012559894220876219726968545168, 10.21253459170271093037905716886