L(s) = 1 | + (−1.73 + 0.0184i)3-s + (0.790 − 1.36i)5-s + (−2.57 − 0.601i)7-s + (2.99 − 0.0640i)9-s + (2.58 + 4.47i)11-s + (−0.681 − 1.18i)13-s + (−1.34 + 2.38i)15-s + (−2.30 + 3.99i)17-s + (−0.0321 − 0.0557i)19-s + (4.47 + 0.994i)21-s + (3.37 − 5.84i)23-s + (1.24 + 2.16i)25-s + (−5.19 + 0.166i)27-s + (4.70 − 8.15i)29-s + 2.66·31-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0106i)3-s + (0.353 − 0.612i)5-s + (−0.973 − 0.227i)7-s + (0.999 − 0.0213i)9-s + (0.779 + 1.35i)11-s + (−0.189 − 0.327i)13-s + (−0.347 + 0.616i)15-s + (−0.559 + 0.969i)17-s + (−0.00738 − 0.0127i)19-s + (0.976 + 0.216i)21-s + (0.703 − 1.21i)23-s + (0.249 + 0.432i)25-s + (−0.999 + 0.0320i)27-s + (0.874 − 1.51i)29-s + 0.478·31-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(0.902+0.431i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(0.902+0.431i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
0.902+0.431i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), 0.902+0.431i)
|
Particular Values
L(1) |
≈ |
1.088412129 |
L(21) |
≈ |
1.088412129 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.73−0.0184i)T |
| 7 | 1+(2.57+0.601i)T |
good | 5 | 1+(−0.790+1.36i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−2.58−4.47i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.681+1.18i)T+(−6.5+11.2i)T2 |
| 17 | 1+(2.30−3.99i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.0321+0.0557i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3.37+5.84i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.70+8.15i)T+(−14.5−25.1i)T2 |
| 31 | 1−2.66T+31T2 |
| 37 | 1+(−0.880−1.52i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.858+1.48i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.12+8.86i)T+(−21.5−37.2i)T2 |
| 47 | 1+5.20T+47T2 |
| 53 | 1+(0.479−0.831i)T+(−26.5−45.8i)T2 |
| 59 | 1−9.33T+59T2 |
| 61 | 1−14.3T+61T2 |
| 67 | 1−12.4T+67T2 |
| 71 | 1−4.49T+71T2 |
| 73 | 1+(0.941−1.63i)T+(−36.5−63.2i)T2 |
| 79 | 1+6.53T+79T2 |
| 83 | 1+(−5.08+8.81i)T+(−41.5−71.8i)T2 |
| 89 | 1+(4.12+7.14i)T+(−44.5+77.0i)T2 |
| 97 | 1+(7.26−12.5i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.977189117870323698851141178951, −9.334225332392388090437961821072, −8.312604269256964289706021756568, −6.93635700792709662094482723227, −6.63651327247862392936929314184, −5.63799641966201589040989315941, −4.63503644843900516965213782972, −3.96479453547305414648603663885, −2.21781919861293584544449991931, −0.794758937268402733944326751915,
0.943881466082071393086063855300, 2.73048240598811405082632134286, 3.68893396162874186594086168063, 4.99317958180120288338840615843, 5.87266391119547836949464398066, 6.70049516348071958728458025582, 6.95898102527743685785105458607, 8.500558419834844306407211515887, 9.447311441026437789235168750223, 9.960862643310531676635929750921