L(s) = 1 | − 2i·2-s + 3·3-s − 4·4-s + 10i·5-s − 6i·6-s + 8i·7-s + 8i·8-s + 9·9-s + 20·10-s − 40i·11-s − 12·12-s + 16·14-s + 30i·15-s + 16·16-s − 130·17-s − 18i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577·3-s − 0.5·4-s + 0.894i·5-s − 0.408i·6-s + 0.431i·7-s + 0.353i·8-s + 0.333·9-s + 0.632·10-s − 1.09i·11-s − 0.288·12-s + 0.305·14-s + 0.516i·15-s + 0.250·16-s − 1.85·17-s − 0.235i·18-s + ⋯ |
Λ(s)=(=(1014s/2ΓC(s)L(s)(−0.554+0.832i)Λ(4−s)
Λ(s)=(=(1014s/2ΓC(s+3/2)L(s)(−0.554+0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
1014
= 2⋅3⋅132
|
Sign: |
−0.554+0.832i
|
Analytic conductor: |
59.8279 |
Root analytic conductor: |
7.73485 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1014(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1014, ( :3/2), −0.554+0.832i)
|
Particular Values
L(2) |
≈ |
1.482392771 |
L(21) |
≈ |
1.482392771 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2iT |
| 3 | 1−3T |
| 13 | 1 |
good | 5 | 1−10iT−125T2 |
| 7 | 1−8iT−343T2 |
| 11 | 1+40iT−1.33e3T2 |
| 17 | 1+130T+4.91e3T2 |
| 19 | 1+20iT−6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1+18T+2.43e4T2 |
| 31 | 1+184iT−2.97e4T2 |
| 37 | 1−74iT−5.06e4T2 |
| 41 | 1+362iT−6.89e4T2 |
| 43 | 1+76T+7.95e4T2 |
| 47 | 1−452iT−1.03e5T2 |
| 53 | 1−382T+1.48e5T2 |
| 59 | 1+464iT−2.05e5T2 |
| 61 | 1−358T+2.26e5T2 |
| 67 | 1+700iT−3.00e5T2 |
| 71 | 1+748iT−3.57e5T2 |
| 73 | 1+1.05e3iT−3.89e5T2 |
| 79 | 1+976T+4.93e5T2 |
| 83 | 1+1.00e3iT−5.71e5T2 |
| 89 | 1−386iT−7.04e5T2 |
| 97 | 1+614iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.124794221872116073003463240844, −8.789616090104045527964856577049, −7.76612767480301943300680066515, −6.73999239465243409347204606476, −5.92104777030879332334984403212, −4.64622862781921420867562534243, −3.62735962932438679534243527039, −2.76813292916274978802455244177, −2.03829401380890338725458088501, −0.35420853440194243953923057116,
1.16923579954615080831175118171, 2.41494561031306130401015048528, 4.01603530283211187039009158866, 4.55362670802625689011220061591, 5.45676042879623974439533014159, 6.85062451753392867027536244855, 7.16165388409966698832172935135, 8.458817569423969188568435150628, 8.706375114149408590148870097491, 9.670128744536759041032034745284